Skip to main content
Log in

Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-14C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asheuer M, Bieche I, Laurendeau I, et al (2005) Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy. Hum Mol Genet 14:1293–1303

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Bourre JM, Pollet SA, Daudu OL, Baumann NA (1973) Evolution, in mouse brain microsomes, of lipids and their constituents during myelination. Brain Res 51:225–239

    Article  CAS  PubMed  Google Scholar 

  • Bourre JM, Daudu OL, Baymann NA (1975) Biosynthesis of lignoceric acid from behenyl-CoA in mouse brain microsomes. Comparison between normal and Quaking mutant. Biochem Biophys Res Commun 63:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Bourre JM, Paturneau-Jouas MY, Daudu OL, Baumann NA (1977) Lignoceric acid biosynthesis in the developing brain. Activities of mitochondrial acetyl-CoA-dependent synthesis and microsomal malonyl-CoA chain-elongating system in relation to myelination. Comparison between normal mouse and dysmyelinating mutants (quaking and jimpy). Eur J Biochem 72:41–47

    Article  CAS  PubMed  Google Scholar 

  • Brophy PJ, Vance DE (1975) Elongation of fatty acids by microsomal fractions from the brain of the developing rat. Biochem J 152:495–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown 3rd FR, Chen WW, Kirschner DA, et al (1983) Myelin membrane from adrenoleukodystrophy brain white matter–biochemical properties. J Neurochem 41:341–348

    Article  CAS  PubMed  Google Scholar 

  • Fourcade S, Ruiz M, Camps C, et al (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296:E211–E221

    Article  CAS  PubMed  Google Scholar 

  • Heinzer AK, Watkins PA, Lu JF, et al (2003) A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum Mol Genet 12:1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Ho JK, Moser H, Kishimoto Y, Hamilton JA (1995) Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J Clin Invest 96:1455–1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imanaka T, Shiina Y, Takano T, Hashimoto T, Osumi T (1996) Insertion of the 70-kDa peroxisomal membrane protein into peroxisomal membranes in vivo and in vitro. J Biol Chem 271:3706–3713

    Article  CAS  PubMed  Google Scholar 

  • Jang J, Kang HC, Kim HS, et al (2011) Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann Neurol 70:402–409

    Article  PubMed  Google Scholar 

  • Kemp S, Wanders R (2010) Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol 20:831–837

    Article  CAS  PubMed  Google Scholar 

  • Kemp S. Valianpour F, Denis S et al (2005) Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol Genet Metab 84:144–151.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Shinnoh N, Kondo A, Yamada T (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232:631–636

    Article  CAS  PubMed  Google Scholar 

  • Lazo O, Singh AK, Singh I (1991) Postnatal development and isolation of peroxisomes from brain. J Neurochem 56:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD (2001) Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276:45358–45366

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822:1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Takahashi I, Kanai M, et al (2005) Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett 579:409–414

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Shimozawa N, Kashiwayama Y, Suzuki Y, Imanaka T (2011) ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy. Curr Drug Targets 12:694–706

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Kobayashi J, Yamazaki K, et al (2013) A novel double mutation in the ABCD1 gene in a patient with X-linked adrenoleukodystrophy: analysis of the stability and function of the mutant ABCD1 protein. JIMD Rep 10:95–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120:1485–1508

    Article  PubMed  Google Scholar 

  • Mosser J, Douar AM, Sarde CO, et al (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726–730

    Article  CAS  PubMed  Google Scholar 

  • Murad S, Kishimoto Y (1978) Chain elongation of fatty acid in brain: a comparison of mitochondrial and microsomal enzyme activities. Arch Biochem Biophys 185:300–306

    Article  CAS  PubMed  Google Scholar 

  • Ofman R, Dijkstra IM, van Roermund CW, et al (2010) The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol Med 2:90–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paintlia AS, Gilg AG, Khan M, Singh AK, Barbosa E, Singh I (2003) Correlation of very long chain fatty acid accumulation and inflammatory disease progression in childhood X-ALD: implications for potential therapies. Neurobiol Dis 14:425–439

    Article  CAS  PubMed  Google Scholar 

  • Poulos A, Usher S, Paton BC (1993) Fatty acid synthesis from [2-14C]acetate in normal and peroxisome-deficient (Zellweger) fibroblasts. Lipids 28:97–102

    Article  CAS  PubMed  Google Scholar 

  • Schackmann MJ, Ofman R, Dijkstra IM, Wanders RJ, Kemp S (2014) Enzymatic characterization of ELOVL1, a key enzyme in very long-chain fatty acid synthesis. Biochim Biophys Acta 1851:231–237

    Article  PubMed  Google Scholar 

  • Shinnoh N, Yamada T, Yoshimura T, et al (1995) Adrenoleukodystrophy: the restoration of peroxisomal β-oxidation by transfection of normal cDNA. Biochem Biophys Res Commun 210:830–836

    Article  CAS  PubMed  Google Scholar 

  • Street JM, Johnson DW, Singh H, Poulos A (1989) Metabolism of saturated and polyunsaturated fatty acids by normal and Zellweger syndrome skin fibroblasts. Biochem J 260:647–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Street JM, Singh H, Poulos A (1990) Metabolism of saturated and polyunsaturated very-long-chain fatty acids in fibroblasts from patients with defects in peroxisomal β-oxidation. Biochem J 269:671–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuji S, Ohno T, Miyatake T, Suzuki A, Yamakawa T (1984) Fatty acid elongation activity in fibroblasts from patients with adrenoleukodystrophy (ALD). J Biochem 96:1241–1247

    CAS  PubMed  Google Scholar 

  • Wang Y, Botolin D, Xu J, et al (2006) Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 47:2028–2041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid for Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan, and for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22590060, 23590072, 26460063). Pacific Edit reviewed the manuscript prior to submission.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article dose not contain any studies with human participants performed by any of the authors. All institutional and national guidelines for the care and use of laboratory animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University Committee for Animal Use and Care at the University of Toyama.

Informed consent

N/A

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Morita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, M., Kawamichi, M., Shimura, Y. et al. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase. Metab Brain Dis 30, 1359–1367 (2015). https://doi.org/10.1007/s11011-015-9701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9701-1

Keywords

Navigation