Skip to main content

Advertisement

Log in

Blood–brain barrier dysfunction following traumatic brain injury

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Traumatic brain injury is a serious cause of morbidity and mortality worldwide. After traumatic brain injury, the blood–brain barrier, the protective barrier between the brain and the intravascular compartment, becomes dysfunctional, leading to leakage of proteins, fluid, and transmigration of immune cells. As this leakage has profound clinical implications, including edema formation, elevated intracranial pressure and decreased perfusion pressure, much interest has been paid to better understanding the mechanisms responsible for these events. Various molecular pathways and numerous mediators have been found to be involved in the intricate process of regulating blood–brain barrier permeability following traumatic brain injury. This review provides an update to the existing knowledge about the various pathophysiological pathways and advancements in the field of blood–brain barrier dysfunction and hyperpermeability following traumatic brain injury, including the role of various tight junction proteins involved in blood–brain barrier integrity and regulation. We also address pitfalls of existing systems and propose strategies to improve the various debilitating functional deficits caused by this progressive epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

TBI:

Traumatic brain injury

CNS:

Central nervous system

References

  • Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    Article  PubMed  Google Scholar 

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. doi:10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  • Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, Zimmerman MC, Chandra N, Haorah J (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 60:282–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31:693–705. doi:10.1038/jcbfm.2010.148

    Article  PubMed Central  PubMed  Google Scholar 

  • Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S (2011) Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp. 22(54). doi:10.3791/3063

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584. doi:10.1101/cshperspect.a002584

    Article  PubMed Central  PubMed  Google Scholar 

  • Ankeny DP, Popovich PG (2010) B cells and autoantibodies: complex roles in CNS injury. Trends Immunol 31:332–338. doi:10.1016/j.it.2010.06.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Annunziata P, Cioni C, Santonini R, Paccagnini E (2002) Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J Neuroimmunol 131:41–49

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561. doi:10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  • Arshad F, Wang L, Sy C, Avraham S, Avraham HK (2010) Blood–brain barrier integrity and breast cancer metastasis to the brain. Patholo Res Int. doi:10.4061/2011/920509

    Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DD, Goldblum SE (1999) Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest 79:1181–1199

    CAS  PubMed  Google Scholar 

  • Barzo P, Marmarou A, Fatouros P, Corwin F, Dunbar J (1996) Magnetic resonance imaging-monitored acute blood–brain barrier changes in experimental traumatic brain injury. J Neurosurg 85:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997a) Biphasic pathophysiological response of vasogenic and cellularedema in traumatic brain swelling. Acta Neurochir Suppl 70:119–122

    CAS  PubMed  Google Scholar 

  • Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997b) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907

    Article  CAS  PubMed  Google Scholar 

  • Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36

    Article  PubMed  Google Scholar 

  • Bauer HC, Traweger A, Zweimueller-Mayer J, Lehner C, Tempfer H, Krizbai I, Wilhelm I, Bauer H (2011) New aspects of the molecular constituents of tissue barriers. J Neural Transm 118:7–21. doi:10.1007/s00702-010-0484-6

    Article  CAS  PubMed  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood–brain barrier 4–500 million years ago. Glia 56:699–708. doi:10.1002/glia.20642

    Article  PubMed  Google Scholar 

  • Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, Kerskens CM, Cahalan SD, Callanan JJ, Wallace E, Grant GA, Doherty CP, Humphries P (2012) Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 3:849. doi:10.1038/ncomms1852

    Article  PubMed  CAS  Google Scholar 

  • Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed Central  PubMed  Google Scholar 

  • Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30:255–266

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Huang W, Constantini S (2013) Concepts and strategies for clinical management of blast-induced traumatic brain injury andposttraumatic stress disorder. J Neuropsychiatry Clin Neurosci Spring 25:103–110. doi:10.1176/appi.neuropsych.12030058

    Article  CAS  Google Scholar 

  • Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Zhang J (2014) The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats. J Neurol Sci 342:93–100. doi:10.1016/j.jns.2014.04.032

    Article  PubMed  Google Scholar 

  • Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778:588–600

    Article  CAS  PubMed  Google Scholar 

  • Colicos MA, Dixon CE, Dash PK (1996) Delayed, selective neuronal death following experimental cortical impact injury in rats: possible role in memory deficits. Brain Res 739:111–119

    Article  CAS  PubMed  Google Scholar 

  • Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19:836–853. doi:10.1089/ars.2012.4981

    Article  CAS  PubMed  Google Scholar 

  • Czigner A, Mihály A, Farkas O, Büki A, Krisztin-Péva B, Dobó E, Barzó P (2007) Kinetics of the cellular immune response following closed head injury. Acta Neurochir (Wien) 149:281–289

    Article  CAS  Google Scholar 

  • Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72:648–672. doi:10.1002/ana.23648

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566. doi:10.1038/nature09513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 9:236. doi:10.1186/1742-2094-9-236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dejana E, Lampugnani MG, Martinez-Estrada O, Bazzoni G (2004) The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int J Dev Biol 44:743–748

    Google Scholar 

  • Dietrich W, Erbguth F (2013) Increased intracranial pressure and brain edema. Med Klin Intensivmed Notfallmed 108:157–169

    Article  CAS  Google Scholar 

  • Ding J, Guo J, Yuan Q, Yuan F, Chen H, Tian H (2013) Inhibition of phosphatase and tensin homolog deleted on chromosome 10 decreases rat cortical neuron injury and blood–brain barrier permeability, and improves neurological functional recovery in traumatic brain injury model. PLoS One 8:e80429. doi:10.1371/journal.pone.0080429

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262

    Article  CAS  PubMed  Google Scholar 

  • Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69

    Article  CAS  PubMed  Google Scholar 

  • Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and Neurotoxicology. Neurotoxicology 33:586–604. doi:10.1016/j.neuro.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Sorokin L (2009) The blood–brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511. doi:10.1007/s00281-009-0177-0

    Article  PubMed  Google Scholar 

  • Fang B, Liang M, Yang G, Ye Y, Xu H, He X, Huang JH (2014) Expression of S100A6 in rat hippocampus after traumatic brain injury due to lateral headacceleration. Int J Mol Sci 15(4):6378–6390. doi:10.3390/ijms15046378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  • Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta

    Google Scholar 

  • Finnie JW, Blumbergs PC (2002) Traumatic brain injury. Vet Pathol 39:679–689

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Takagi Y, Aoki T, Hayase M, Marumo T, Gomi M, Nishimura M, Kataoka H, Hashimoto N, Nozaki K (2008) Tissue inhibitor of metalloproteinases protect blood–brain barrier disruption in focal cerebral ischemia. J Cereb Blood Flow Metab 28:1674–1685

    Article  CAS  PubMed  Google Scholar 

  • Fukuda AM, Badaut J (2012) Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 9:279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao W, Xu H, Liang M, Huang JH, He X (2013) Association between reduced expression of hippocampal glucocorticoid receptors and cognitive dysfunction in a rat model of traumatic brain injury due to lateral head acceleration. Neurosci Lett 533:50–54. doi:10.1016/j.neulet.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  • Gean AD, Fischbein NJ (2010) Head Trauma. Neuroimaging Clin N Am 20:527–556. doi:10.1016/j.nic.2010.08.001

    Article  PubMed  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  CAS  PubMed  Google Scholar 

  • Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Leuckocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39. doi:10.1111/j.1365-2990.2010.01140.x

    Article  CAS  PubMed  Google Scholar 

  • Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76:97–104. doi:10.1002/msj.20104

    Article  PubMed  Google Scholar 

  • Guest J, Garg M, Bilgin A, Grant R (2013) Relationship between central and peripheral fatty acids in humans. Lipids Health Dis 12:79. doi:10.1186/1476-511X-12-79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haber M, Abdel Baki SG, Grin’kina NM, Irizarry R, Ershova A, Orsi S, Grill RJ, Dash P, Bergold PJ (2013) Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol 249:169–177. doi:10.1016/j.expneurol.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  • Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR (2007) Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 25:231–238

    Article  CAS  PubMed  Google Scholar 

  • Hakan T, Toklu HZ, Biber N, Ozevren H, Solakoglu S, Demirturk P, Aker FV (2010) Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood–brain barrier permeability. Neurol Res 32:629–635. doi:10.1179/016164109X12464612122731

    Article  CAS  PubMed  Google Scholar 

  • Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fluorojade staining methods. J Neurotrauma 25:235–247. doi:10.1089/neu.2007.0383

    Article  PubMed  Google Scholar 

  • Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 74:385–410

    Article  CAS  PubMed  Google Scholar 

  • Helmy A, Vizcaychipi M, Gupta AK (2007) Traumatic brain injury: intensive care management. Br J Anaesth 99:32–42

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11:125–137

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AN, Cheng JP, Zafonte RD, Kline AE (2008) Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits. Life Sci 83:602–607. doi:10.1016/j.lfs.2008.08.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holbourn AH (1943) Mechanics of head injuries. Lancet 2:438–441

    Article  Google Scholar 

  • Hooper C, Pinteaux-Jones F, Fry VA, Sevastou IG, Baker D, Heales SJ, Pocock JM (2009) Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood–brain barrier damage. J Neurochem 109:694–705

    Article  CAS  PubMed  Google Scholar 

  • Hue CD, Cao S, Dale Bass CR, Meaney DF, Morrison B 3rd (2014) Repeated primary blast injury causes delayed recovery, but not additive disruption, in an in vitro blood–brain barrier model. J Neurotrauma 31:951–960. doi:10.1089/neu.2013.3149

    Article  PubMed  Google Scholar 

  • Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353

    PubMed  Google Scholar 

  • Kline AE, Wagner AK, Westergom BP, Malena RR, Zafonte RD, Olsen AS, Sozda CN, Luthra P, Panda M, Cheng JP, Aslam HA (2007) Acute treatment with the 5-HT(1A) receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behav Brain Res 177:186–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kline AE, Hoffman AN, Cheng JP, Zafonte RD, Massucci JL (2008) Chronic administration of antipsychotics impede behavioral recovery after experimental traumatic brain injury. Neurosci Lett 448:263–267. doi:10.1016/j.neulet.2008.10.076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Könnecke H, Bechmann I (2013) The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol 2013:914104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 50:258–265

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Kim J, Williams R, Sandhir R, Gregory E, Brooks WM, Berman NE (2011) Effects of aging on blood brain barrier and matrix metalloproteases following controlled cortical impact in mice. Exp Neurol 234:50–61. doi:10.1016/j.expneurol.2011.12.016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liao Y, Liu P, Guo F, Zhang ZY, Zhang Z (2013) Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One 8:e68963. doi:10.1371/journal.pone.0068963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liddelow SA (2011) Fluids and barriers of the CNS: a historical viewpoint. Fluids Barrier CNS 8:2. doi:10.1186/2045-8118-8-2

    Article  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leeven P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  CAS  PubMed  Google Scholar 

  • Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV (2013) Modeling the blood–brain barrier using stem cell sources. Fluids Barrier CNS 10:2. doi:10.1186/2045-8118-10-2

    Article  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147:S232–S240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, Raichle ME, Witherow JR, Fang R, Flaherty SF, Brody DL (2011) Detection of blastrelated traumatic brain injury in U.S. military personnel. N Engl J Med 364:2091–2100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maegele M (2013) Coagulopathy after traumatic brain injury: incidence, pathology, and treatment options. Transfusion 53:28S–37S. doi:10.1111/trf.12033

    Article  PubMed  Google Scholar 

  • Mariano C, Palmela I, Pereira P, Fernandes A, Falcão AS, Cardoso FL, Vaz AR, Campos AR, Gonçalves-Ferreira A, Kim KS, Brites D, Brito MA (2013) Tricellulin expression in brain endothelial and neural cells. Cell Tissue Res 351:397–407. doi:10.1007/s00441-012-1529-y

    Article  CAS  PubMed  Google Scholar 

  • Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30:228–234

    Article  CAS  PubMed  Google Scholar 

  • Mayhan WG (2001) Regulation of blood–brain barrier permeability. Microcirculation 8:89–104

    CAS  PubMed  Google Scholar 

  • Meaney DF, Margulies SS, Smith DH (2001) Diffuse axonal injury. J Neurosurg 95:1108–1110

    CAS  PubMed  Google Scholar 

  • Miller F, Afonso PV, Gessain A, Ceccaldi PE (2012) Blood–brain barrier and retroviral infections. Virulence 3:222–229. doi:10.4161/viru.19697

    Article  PubMed Central  PubMed  Google Scholar 

  • Minagar A, Alexander JS (2003) Blood–brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549

    Article  CAS  PubMed  Google Scholar 

  • Morrison B 3rd, Elkin BS, Dollé JP, Yarmush ML (2011) In vitro models of traumatic brain injury. Annu Rev Biomed Eng 13:91–126. doi:10.1146/annurev-bioeng-071910-124706

    Article  CAS  PubMed  Google Scholar 

  • Morrison G, Fraser DD, Cepinskas G (2013) Mechanisms and consequences of acquired brain injury during development. Pathophysiology 20:49–57. doi:10.1016/j.pathophys.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  • Nag S (2011) Morphology and properties of brain endothelial cells. Methods Mol Biol 686:3–47. doi:10.1007/978-1-60761-938-3_1

    Article  CAS  PubMed  Google Scholar 

  • Nag S, Kapadia A, Stewart DJ (2011) Review: molecular pathogenesis of blood–brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 37:3–23. doi:10.1111/j.1365-2990.2010.01138.x

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263. doi:10.1016/j.neuint.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96

    Article  CAS  PubMed  Google Scholar 

  • Ng I, Yap E, Tan WL, Kong NY (2003) Blood–brain barrier disruption following traumatic brain injury: roles of tight junction proteins. Ann Acad Med Singa 32:S63–S66

    CAS  Google Scholar 

  • Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood–brain barrier. Nat Med 19:1584–1596. doi:10.1038/nm.3407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Connor WT, Smyth A, Gilchrist MD (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther 130:106–113. doi:10.1016/j.pharmthera.2011.01.001

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH (1977) The blood–brain barrier. Exp Eye Res 25:177–190

    Article  CAS  PubMed  Google Scholar 

  • Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778:646–659

    Article  CAS  PubMed  Google Scholar 

  • Patro A, Mohanty S (2009) Pathophysiology and treatment of traumatic brain edema. Indian J Neurotrauma 6:11–16

    Article  Google Scholar 

  • Pearson WS, Sugerman DE, McGuire LC, Coronado VG (2012) Emergency department visits for traumatic brain injury in older adults in the United States: 2006–08. West J Emerg Med 13:289–293. doi:10.5811/westjem.2012.3.11559

    Article  PubMed Central  PubMed  Google Scholar 

  • Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharm 1:223–236

    Article  Google Scholar 

  • Pop V, Badaut J (2011) A neurovascular perspective for long-term changes after brain trauma. Transl Stroke Res 2:533–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prevost TP, Jin G, de Moya MA, Alam HB, Suresh S, Socrate S (2011) Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomater 7:4090–4101. doi:10.1016/j.actbio.2011.06.032

    Article  PubMed  Google Scholar 

  • Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI (1976) Opening of the blood–brain barrier by acute hypertension. Exp Neurol 52:467–479

    Article  CAS  PubMed  Google Scholar 

  • Reichert M, Muller T, Hunziker W (2000) The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin–Darby canine kidney I cells—evidence for a role of b- catenin /Tcf/Lef signaling. J Biol Chem 275:9492–9500

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, Giese RN, Wang B, Shi X, Nedergaard M (2013) ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab 33:834–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosner MJ, Rosner MD (1995) Cerebral prefusion pressure: management protocol and clinical results. J Neurosurg 83:949–962

    Article  CAS  PubMed  Google Scholar 

  • Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT, Workshop Scientific Team and Advisory Panel Members (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738. doi:10.1089/neu.2008.0586

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulzke JD, Fromm M (2009) Tight junctions: molecular structure meets function. Ann N Y Acad Sci 1165:1–6. doi:10.1111/j.1749-6632.2009.04925.x

    Article  CAS  PubMed  Google Scholar 

  • Scott BN, Roberts DJ, Robertson HL, Kramer AH, Laupland KB, Ousman SS, Kubes P, Zygun DA (2013) Incidence, prevalence, and occurrence rate of infection among adults hospitalized after traumatic brain injury: study protocol for a systematic review and meta-analysis. Syst Rev 2:68

    Article  PubMed Central  PubMed  Google Scholar 

  • Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood–brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77:141–148

    CAS  PubMed  Google Scholar 

  • Shear DA, Lu XC, Pedersen R, Wei G, Chen Z, Davis A, Yao C, Dave J, Tortella FC (2011) Severity profile of penetrating ballistic-like brain injury on neurofunctional outcome, blood–brain barrier permeability, and brain edema formation. J Neurotrauma 28:2185–2195. doi:10.1089/neu.2011.1916

    Article  PubMed  Google Scholar 

  • Shlosberg D, Benifla M, Kaufer D, Friedman (2010) A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403. doi:10.1038/nrneurol.2010.74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    Article  CAS  PubMed  Google Scholar 

  • Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 36:1376–1381. doi:10.1016/j.neubiorev.2012.02.013

    Article  PubMed  Google Scholar 

  • Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192. doi:10.2174/157015908785777210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stolp HB, Liddelow SA, Sá-Pereira I, Dziegielewska KM, Saunders NR (2013) Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci 7:61. doi:10.3389/fnint.2013.00061

    Article  PubMed Central  PubMed  Google Scholar 

  • Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T (2008) The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153:175–181. doi:10.1016/j.neuroscience.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  • Taliquist MD, French WJ, Soriano P (2003) Additive effects of PDGF receptor β signaling pathways in vascular smooth muscle cell development. PLoS Biol 1:e52

    Article  CAS  Google Scholar 

  • Tanno H, Nockels RP, Pitts LH, Noble LJ (1993) Immunolocalization of heat shock protein after fluid percussive brain injury and relationship to breakdown of the blood–brain barrier. J Cereb Blood Flow Metab 13:116–124

    Article  CAS  PubMed  Google Scholar 

  • Thal SC, Luh C, Schaible EV, Timaru-Kast R, Hedrich J, Luhmann HJ, Engelhard K, Zehendner CM (2012) Volatile anesthetics influence blood–brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury. PLoS One 7:e50752. doi:10.1371/journal.pone.0050752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thurman DJ, Branche CM, Sniezek JE (1998) The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J Head Trauma Rehabil 3:1–8

    Google Scholar 

  • Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, Gidon M, Cohen A, Zumsteg D, Friedman (2008) A Blood–brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 79:774–777

    Article  CAS  PubMed  Google Scholar 

  • Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42:221–242

    Article  CAS  PubMed  Google Scholar 

  • Walsh JT, Kipnis J (2011) Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 17:541–547. doi:10.1016/j.molmed.2011.05.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YF, Gu YT, Qin GH, Zhong L, Meng YN (2013) Curcumin ameliorates the permeability of the blood–brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J Mol Neurosci 51:344–351. doi:10.1007/s12031-013-9989-4

    Article  CAS  PubMed  Google Scholar 

  • Weber JT (2012) Altered calcium signaling following traumatic brain injury. Front Pharmacol 3:60. doi:10.3389/fphar.2012.00060. eCollection 2012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weckbach S, Neher M, Losacco JT, Bolden AL, Kulik L, Flierl MA, Bell SE, Holers VM, Stahel PF (2012) Challenging the role of adaptive immunity in neurotrauma: Rag1(−/−) mice lacking mature B and T cells do not show neuroprotection after closed head injury. J Neurotrauma 29:1233–1242. doi:10.1089/neu.2011.2169

    Article  PubMed Central  PubMed  Google Scholar 

  • Werner C, Engelhard K (2007) Pathiophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  CAS  PubMed  Google Scholar 

  • Wiggins-Dohlvik K, Merriman M, Shaji CA, Alluri H, Grimsley M, Davis ML, Smith RW, Tharakan B (2014) Tumor necrosis factor-α disruption of brain endothelial cell barrier is mediated through matrix metalloproteinase-9. Am J Surg. doi:10.1016/j.amjsurg.2014.08.014

    PubMed  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2002) Pathophysiology of brain edema formation. Neurosurg Clin N Am 13:371–383

    Article  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142. doi:10.1038/nrn3407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zink BJ, Szmydynger-Chodobska J, Chodobski A (2010) Emerging concepts in the pathophysiology of traumatic brain injury. PsychiatrY Clin North Am 33:741–756. doi:10.1016/j.psc.2010.08.005

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Mr. Glen Cryer for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binu Tharakan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alluri, H., Wiggins-Dohlvik, K., Davis, M.L. et al. Blood–brain barrier dysfunction following traumatic brain injury. Metab Brain Dis 30, 1093–1104 (2015). https://doi.org/10.1007/s11011-015-9651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9651-7

Keywords

Navigation