Skip to main content

Advertisement

Log in

Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1–42 protein

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Baicalin is one bioactive flavone with anti-inflammatory and neuroprotective activities. The neuroprotective effects of baicalin on pathological changes and behavioral deficits were explored in a mouse model of amyloid β (Aβ) 1–42 protein-induced Alzheimer’s disease (AD). Mice received a bilateral injection of Aβ1–42 protein into the hippocampus, then they were treated with baicalin (30, 50 and 100 mg/kg body weight, orally) or Tween 80. The therapeutic effects of baicalin were monitored by Morris water maze trial and probe test. Then mice were sacrificed for immunohistochemistry and western blot analysis. After a relatively short-term treatment of 14 days, 100 mg/kg of baicalin significantly ameliorated memory impairment in the Morris water maze test and probe test, and also attenuated glial cell activations and increase of TNF-α and IL-6 expressions induced by Aβ1–42 protein. These results suggest that baicalin ameliorated Aβ1–42 protein-related pathology and cognitive dysfunction via its anti-neuroinflammatory activity, and may be a potential candidate for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aisen PS et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. doi:10.1001/jama.289.21.2819

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000a) Cell mediators of inflammation in the Alzheimer disease brain Alzheimer disease and associated disorders 14 Suppl 1:S47-53

  • Akiyama H et al (2000b) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bochorakova H, Paulova H, Slanina J, Musil P, Taborska E (2003) Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother Res 17:640–644. doi:10.1002/ptr.1216

    Article  CAS  PubMed  Google Scholar 

  • Cai M et al (2011) Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. J Ethnopharmacol 138:723–730. doi:10.1016/j.jep.2011.10.016

    Article  PubMed  Google Scholar 

  • Cheng F et al. (2013) Baicalin’s Therapeutic Time Window of Neuroprotection during Transient Focal Cerebral Ischemia and Its Antioxidative Effects In Vitro and In Vivo Evidence-based complementary and alternative medicine : eCAM 2013:120261 doi:10.1155/2013/120261

  • Choi SH et al (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colaianna M et al (2010) Soluble beta amyloid (1–42): a critical player in producing behavioural and biochemical changes evoking depressive-related state? Br J Pharmacol 159:1704–1715. doi:10.1111/j.1476-5381.2010.00669.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J biol Chem 277:32046–32053. doi:10.1074/jbc.M201750200

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365. doi:10.1016/j.it.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT et al (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain :J neurol 128:1442–1453

    Article  Google Scholar 

  • Huang Z, Yang Y, Li X, Chen X (1999) Plasma and cerebrospinal fluid pharmacokinetics of baicalin in the rabbit model of brain edema. Chin J Contemp Paediatr 11:146–148

    Google Scholar 

  • Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, Kishimoto T (2000) Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55:951–955

    Article  CAS  PubMed  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochem 32:4693–4697

    Article  CAS  Google Scholar 

  • Jung SH, Kang KD, Ji D, Fawcett RJ, Safa R, Kamalden TA, Osborne NN (2008) The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem Int 53:325–337. doi:10.1016/j.neuint.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Kukar TL et al (2008) Substrate-targeting gamma-secretase modulators. Nature 453:925–929. doi:10.1038/nature07055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HE et al (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid beta (1–42) protein-induced Alzheimer’s disease. Pharmacol Biochem Behav 103:260–266

    Article  CAS  PubMed  Google Scholar 

  • Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371

    Article  CAS  PubMed  Google Scholar 

  • Li BQ et al (2000) The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. Immunopharmacol 49:295–306

    Article  CAS  Google Scholar 

  • Liu Y, Chi L, Gao F, Meng X, Zhang Y, Jiang W (2013) Protective effect of baicalin against convulsion induced by pentylenetetrazol in mice Tianjin. J Tradit Chin Med 30:492–494

    Article  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639. doi:10.1038/nature02621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLarnon JG, Ryu JK (2008) Relevance of abeta1-42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alzheimers Res 5:475–480

    Article  CAS  Google Scholar 

  • Meral D, Urbanc B (2013) Discrete molecular dynamics study of oligomer formation by N-terminally truncated amyloid beta-protein. J Mol Biol 425:2260–2275. doi:10.1016/j.jmb.2013.03.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease The New England. J Med 362:329–344. doi:10.1056/NEJMra0909142

    CAS  Google Scholar 

  • Passos GF et al (2010) Involvement of phosphoinositide 3-kinase gamma in the neuro-inflammatory response and cognitive impairments induced by beta-amyloid 1–40 peptide in mice. Brain Behav Immun 24:493–501

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline Journal of Alzheimer’s disease : JAD 20 Suppl 2:S499-512 doi:10.3233/JAD-2010-100504

  • Reilly JF et al (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc National Acad Sci United States of Am 100:4837–4842. doi:10.1073/pnas.0330745100

    Article  CAS  Google Scholar 

  • Rong Z, Pan R, Xu Y, Zhang C, Cao Y, Liu D (2013) Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat Neuroscience doi:S0306-4522 (13) 00802-610.1016/j.neuroscience.2013.09.030

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357

    Article  PubMed Central  PubMed  Google Scholar 

  • Sawamura N et al (2000) Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J Biol Chem 275:27901–27908

    CAS  PubMed  Google Scholar 

  • Schenk D et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177. doi:10.1038/22124

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Biol 8:447–453

    Article  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Shieh DE, Liu LT, Lin CC (2000) Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20:2861–2865

    CAS  PubMed  Google Scholar 

  • Tan J et al (2002) Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat Neurosci 5:1288–1293

    Article  CAS  PubMed  Google Scholar 

  • Tu XK, Yang WZ, Shi SS, Wang CH, Chen CM (2009) Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia. Neurochem Res 34:1626–1634. doi:10.1007/s11064-009-9953-4

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193. doi:10.1016/j.neuron.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  • Wang CZ, Mehendale SR, Calway T, Yuan CS (2011) Botanical flavonoids on coronary heart disease. The American journal of Chinese medicine 39:661–671. doi:10.1142/S0192415X1100910X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weggen S et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216

    Article  CAS  PubMed  Google Scholar 

  • Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc disord 17:63–67

    Article  PubMed  Google Scholar 

  • Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35:419–432

    Article  CAS  PubMed  Google Scholar 

  • Xue X et al (2010) Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor kappaB p65 activation. Biochem Biophys Res Commun 403:398–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xing D, Wang W, Wang R, Du L (2006) Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract. J Ethnopharmacol 103:120–125. doi:10.1016/j.jep.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J (2013) Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine 8:3769–3779. doi:10.2147/IJN.S51578

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou QB, Duan CZ, Jia Q, Liu P, Li LY (2013) Baicalin attenuates focal cerebral ischemic reperfusion injury by inhibition of protease-activated receptor-1 and apoptosis Chinese. J Integr Med. doi:10.1007/s11655-013-1441-7

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Scientific Fund of China (81,271,392, 81,301,050) and the Fund of Logistics University of Chinese People’s Armed Police Forces (WHTD201306-1). The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqian Liang.

Additional information

Chong Chen and Xiaohong Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, X., Gao, P. et al. Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1–42 protein. Metab Brain Dis 30, 537–544 (2015). https://doi.org/10.1007/s11011-014-9601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9601-9

Keywords

Navigation