Advertisement

Metabolic Brain Disease

, Volume 30, Issue 2, pp 537–544 | Cite as

Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1–42 protein

  • Chong Chen
  • Xiaohong Li
  • Peilong Gao
  • Yue Tu
  • Mingliang Zhao
  • Jianwei Li
  • Sai Zhang
  • Haiqian LiangEmail author
Research Article

Abstract

Baicalin is one bioactive flavone with anti-inflammatory and neuroprotective activities. The neuroprotective effects of baicalin on pathological changes and behavioral deficits were explored in a mouse model of amyloid β (Aβ) 1–42 protein-induced Alzheimer’s disease (AD). Mice received a bilateral injection of Aβ1–42 protein into the hippocampus, then they were treated with baicalin (30, 50 and 100 mg/kg body weight, orally) or Tween 80. The therapeutic effects of baicalin were monitored by Morris water maze trial and probe test. Then mice were sacrificed for immunohistochemistry and western blot analysis. After a relatively short-term treatment of 14 days, 100 mg/kg of baicalin significantly ameliorated memory impairment in the Morris water maze test and probe test, and also attenuated glial cell activations and increase of TNF-α and IL-6 expressions induced by Aβ1–42 protein. These results suggest that baicalin ameliorated Aβ1–42 protein-related pathology and cognitive dysfunction via its anti-neuroinflammatory activity, and may be a potential candidate for the treatment of AD.

Keywords

Alzheimer’s disease Baicalin Neuroinflammation Memory Glial activation 

Notes

Acknowledgements

This work was supported by the National Nature Scientific Fund of China (81,271,392, 81,301,050) and the Fund of Logistics University of Chinese People’s Armed Police Forces (WHTD201306-1). The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Aisen PS et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. doi: 10.1001/jama.289.21.2819 CrossRefPubMedGoogle Scholar
  2. Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000a) Cell mediators of inflammation in the Alzheimer disease brain Alzheimer disease and associated disorders 14 Suppl 1:S47-53Google Scholar
  3. Akiyama H et al (2000b) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bochorakova H, Paulova H, Slanina J, Musil P, Taborska E (2003) Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother Res 17:640–644. doi: 10.1002/ptr.1216 CrossRefPubMedGoogle Scholar
  5. Cai M et al (2011) Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. J Ethnopharmacol 138:723–730. doi: 10.1016/j.jep.2011.10.016 CrossRefPubMedGoogle Scholar
  6. Cheng F et al. (2013) Baicalin’s Therapeutic Time Window of Neuroprotection during Transient Focal Cerebral Ischemia and Its Antioxidative Effects In Vitro and In Vivo Evidence-based complementary and alternative medicine : eCAM 2013:120261 doi:10.1155/2013/120261Google Scholar
  7. Choi SH et al (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68CrossRefPubMedCentralPubMedGoogle Scholar
  8. Colaianna M et al (2010) Soluble beta amyloid (1–42): a critical player in producing behavioural and biochemical changes evoking depressive-related state? Br J Pharmacol 159:1704–1715. doi: 10.1111/j.1476-5381.2010.00669.x CrossRefPubMedCentralPubMedGoogle Scholar
  9. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J biol Chem 277:32046–32053. doi: 10.1074/jbc.M201750200 CrossRefPubMedGoogle Scholar
  10. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365. doi: 10.1016/j.it.2008.05.002 CrossRefPubMedGoogle Scholar
  11. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388CrossRefPubMedGoogle Scholar
  12. Heneka MT et al (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain :J neurol 128:1442–1453CrossRefGoogle Scholar
  13. Huang Z, Yang Y, Li X, Chen X (1999) Plasma and cerebrospinal fluid pharmacokinetics of baicalin in the rabbit model of brain edema. Chin J Contemp Paediatr 11:146–148Google Scholar
  14. Ikemoto S, Sugimura K, Yoshida N, Yasumoto R, Wada S, Yamamoto K, Kishimoto T (2000) Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55:951–955CrossRefPubMedGoogle Scholar
  15. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochem 32:4693–4697CrossRefGoogle Scholar
  16. Jung SH, Kang KD, Ji D, Fawcett RJ, Safa R, Kamalden TA, Osborne NN (2008) The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem Int 53:325–337. doi: 10.1016/j.neuint.2008.09.004 CrossRefPubMedGoogle Scholar
  17. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318CrossRefPubMedGoogle Scholar
  18. Kukar TL et al (2008) Substrate-targeting gamma-secretase modulators. Nature 453:925–929. doi: 10.1038/nature07055 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Lee HE et al (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid beta (1–42) protein-induced Alzheimer’s disease. Pharmacol Biochem Behav 103:260–266CrossRefPubMedGoogle Scholar
  20. Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371CrossRefPubMedGoogle Scholar
  21. Li BQ et al (2000) The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. Immunopharmacol 49:295–306CrossRefGoogle Scholar
  22. Liu Y, Chi L, Gao F, Meng X, Zhang Y, Jiang W (2013) Protective effect of baicalin against convulsion induced by pentylenetetrazol in mice Tianjin. J Tradit Chin Med 30:492–494CrossRefGoogle Scholar
  23. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639. doi: 10.1038/nature02621 CrossRefPubMedCentralPubMedGoogle Scholar
  24. McLarnon JG, Ryu JK (2008) Relevance of abeta1-42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alzheimers Res 5:475–480CrossRefGoogle Scholar
  25. Meral D, Urbanc B (2013) Discrete molecular dynamics study of oligomer formation by N-terminally truncated amyloid beta-protein. J Mol Biol 425:2260–2275. doi: 10.1016/j.jmb.2013.03.010 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease The New England. J Med 362:329–344. doi: 10.1056/NEJMra0909142 Google Scholar
  27. Passos GF et al (2010) Involvement of phosphoinositide 3-kinase gamma in the neuro-inflammatory response and cognitive impairments induced by beta-amyloid 1–40 peptide in mice. Brain Behav Immun 24:493–501CrossRefPubMedGoogle Scholar
  28. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline Journal of Alzheimer’s disease : JAD 20 Suppl 2:S499-512 doi: 10.3233/JAD-2010-100504
  29. Reilly JF et al (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc National Acad Sci United States of Am 100:4837–4842. doi: 10.1073/pnas.0330745100 CrossRefGoogle Scholar
  30. Rong Z, Pan R, Xu Y, Zhang C, Cao Y, Liu D (2013) Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat Neuroscience doi:S0306-4522 (13) 00802-610.1016/j.neuroscience.2013.09.030Google Scholar
  31. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357CrossRefPubMedCentralPubMedGoogle Scholar
  32. Sawamura N et al (2000) Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J Biol Chem 275:27901–27908PubMedGoogle Scholar
  33. Schenk D et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177. doi: 10.1038/22124 CrossRefPubMedGoogle Scholar
  34. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Biol 8:447–453CrossRefGoogle Scholar
  35. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  36. Shieh DE, Liu LT, Lin CC (2000) Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20:2861–2865PubMedGoogle Scholar
  37. Tan J et al (2002) Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat Neurosci 5:1288–1293CrossRefPubMedGoogle Scholar
  38. Tu XK, Yang WZ, Shi SS, Wang CH, Chen CM (2009) Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia. Neurochem Res 34:1626–1634. doi: 10.1007/s11064-009-9953-4 CrossRefPubMedGoogle Scholar
  39. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193. doi: 10.1016/j.neuron.2004.09.010 CrossRefPubMedGoogle Scholar
  40. Wang CZ, Mehendale SR, Calway T, Yuan CS (2011) Botanical flavonoids on coronary heart disease. The American journal of Chinese medicine 39:661–671. doi: 10.1142/S0192415X1100910X CrossRefPubMedCentralPubMedGoogle Scholar
  41. Weggen S et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216CrossRefPubMedGoogle Scholar
  42. Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc disord 17:63–67CrossRefPubMedGoogle Scholar
  43. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35:419–432CrossRefPubMedGoogle Scholar
  44. Xue X et al (2010) Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor kappaB p65 activation. Biochem Biophys Res Commun 403:398–404CrossRefPubMedGoogle Scholar
  45. Zhang L, Xing D, Wang W, Wang R, Du L (2006) Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract. J Ethnopharmacol 103:120–125. doi: 10.1016/j.jep.2005.07.013 CrossRefPubMedGoogle Scholar
  46. Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J (2013) Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine 8:3769–3779. doi: 10.2147/IJN.S51578 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Zhou QB, Duan CZ, Jia Q, Liu P, Li LY (2013) Baicalin attenuates focal cerebral ischemic reperfusion injury by inhibition of protease-activated receptor-1 and apoptosis Chinese. J Integr Med. doi: 10.1007/s11655-013-1441-7 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chong Chen
    • 1
  • Xiaohong Li
    • 1
  • Peilong Gao
    • 1
  • Yue Tu
    • 1
  • Mingliang Zhao
    • 1
  • Jianwei Li
    • 1
  • Sai Zhang
    • 1
  • Haiqian Liang
    • 1
    Email author
  1. 1.Institute of Traumatic Brain Injury and NeurologyPingjin Hospital, Logistics University of Chinese People’s Armed Police ForcesTianjinChina

Personalised recommendations