Skip to main content

Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery

Abstract

There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Adeoye O, Broderick JP (2010) Advances in the management of intracerebral hemorrhage. Nat Rev Neurol 6(11):593–601. doi:10.1038/nrneurol.2010.146

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59. doi:10.1016/j.biocel.2008.06.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aguilar MI, Freeman WD (2010) Spontaneous intracerebral hemorrhage. Semin Neurol 30(5):555–564. doi:10.1055/s-0030-1268865

    Article  PubMed  Google Scholar 

  • Ariesen MJ, Claus SP, Rinkel GJ, Algra A (2003) Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke 34(8):2060–2065. doi:10.1161/01.STR.0000080678.09344.8D

    Article  CAS  PubMed  Google Scholar 

  • Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786. doi:10.1161/STROKEAHA.110.596718

    Article  PubMed Central  PubMed  Google Scholar 

  • Badjatia N, Rosand J (2005) Intracerebral hemorrhage. Neurologist 11(6):311–324

    Article  PubMed  Google Scholar 

  • Belayev L, Saul I, Curbelo K, Busto R, Belayev A, Zhang Y, Riyamongkol P, Zhao W, Ginsberg MD (2003) Experimental intracerebral hemorrhage in the mouse: histological, behavioral, and hemodynamic characterization of a double-injection model. Stroke 34(9):2221–2227. doi:10.1161/01.STR.0000088061.06656.1E

    Article  PubMed  Google Scholar 

  • Broderick JP, Adams HP Jr, Barsan W, Feinberg W, Feldmann E, Grotta J, Kase C, Krieger D, Mayberg M, Tilley B, Zabramski JM, Zuccarello M (1999) Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 30(4):905–915

    Article  CAS  PubMed  Google Scholar 

  • Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS, Vespa P, Zuccarello M, American Heart Association/American Stroke Association Stroke C, American Heart Association/American Stroke Association High Blood Pressure Research C, Quality of C, Outcomes in Research Interdisciplinary Working G (2007) Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation 116(16):e391–e413. doi:10.1161/CIRCULATIONAHA.107.183689

    Article  PubMed  Google Scholar 

  • Bullock R, Mendelow AD, Teasdale GM, Graham DI (1984) Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: description of technique, ICP changes and neuropathological findings. Neurol Res 6(4):184–188

    CAS  PubMed  Google Scholar 

  • Caplan LR (2009) Basic Pathology, anatomy, and pathophysiology of stroke. In: Caplan’s Stroke: A clinical Approach. 4th edn. Saunders Elsevier, Philadelphia, p 22

  • Centers for Disease C, Prevention (2009) Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morbidity and mortality weekly report 58 (16):421–426

  • Centers for Disease C, Prevention (2013) Vital signs: avoidable deaths from heart disease, stroke, and hypertensive disease—United States, 2001–2010. MMWR Morbidity and mortality weekly report 62 (35):721–727

  • Chen J, Qin J, Su Q, Liu Z, Yang J (2012a) Treadmill rehabilitation treatment enhanced BDNF-TrkB but not NGF-TrkA signaling in a mouse intracerebral hemorrhage model. Neurosci Lett 529(1):28–32. doi:10.1016/j.neulet.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Tsai JC, Lin TY, Chang CK, Tseng TH, Chien CL (2012b) Brain-derived neurotrophic factor-transfected and non transfected 3T3 fibroblasts enhance migratory neuroblasts and functional restoration in mice with intracerebral hemorrhage. J Neuropathol Exp Neurol 71(12):1123–1136. doi:10.1097/NEN.0b013e3182779e96

    Article  CAS  PubMed  Google Scholar 

  • Chesney JA, Kondoh T, Conrad JA, Low WC (1995) Collagenase-induced Intrastriatal hemorrhage in rats results in long-term locomotor deficits. Stroke 26(2):312–316, discussion 317

    Article  CAS  PubMed  Google Scholar 

  • Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212. doi:10.1007/978-0-387-46401-5_8

    Article  PubMed Central  PubMed  Google Scholar 

  • Counsell C, Boonyakarnkul S, Dennis M, Sandercock P, Bamford J, Burn J, Warlow C (1995) Primary intracerebral haemorrhage in the Oxford shire community stroke project. Cerebrovasc Dis 5(1):26–34

    Article  Google Scholar 

  • Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L (2014) Neuroprotective gases—fantasy or reality for clinical use? Prog Neurobiol. doi:10.1016/j.pneurobio.2014.01.001

    PubMed  Google Scholar 

  • Dierksen GA, Skehan ME, Khan MA, Jeng J, Nandigam RN, Becker JA, Kumar A, Neal KL, Betensky RA, Frosch MP, Rosand J, Johnson KA, Viswanathan A, Salat DH, Greenberg SM (2010) Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann Neurol 68(4):545–548. doi:10.1002/ana.22099

    Article  PubMed Central  PubMed  Google Scholar 

  • Ewen T, Qiuting L, Chaogang T, Tao T, Jun W, Liming T, Guanghong X (2013) Neuroprotective effect of atorvastatin involves suppression of TNF-alpha and up regulation of IL-10 in a rat model of intracerebral hemorrhage. Cell Biochem Biophys 66(2):337–346. doi:10.1007/s12013-012-9453-z

    Article  PubMed  Google Scholar 

  • Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27. doi:10.1186/1742-2094-10-27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fingas M, Clark DL, Colbourne F (2007) The effects of selective brain hypothermia on intracerebral hemorrhage in rats. Exp Neurol 208(2):277–284. doi:10.1016/j.expneurol.2007.08.018

    Article  PubMed  Google Scholar 

  • Fingas M, Penner M, Silasi G, Colbourne F (2009) Treatment of intracerebral hemorrhage in rats with 12 h, 3 days and 6 days of selective brain hypothermia. Exp Neurol 219(1):156–162. doi:10.1016/j.expneurol.2009.05.007

    Article  PubMed  Google Scholar 

  • Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH, Group S (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40(6):2244–2250. doi:10.1161/STROKEAHA.108.541128

    Article  PubMed Central  PubMed  Google Scholar 

  • Gillespie CD, Hurvitz KA, Centers for Disease C, Prevention (2013) Prevalence of hypertension and controlled hypertension—United States, 2007–2010. Morbidity and mortality weekly report Surveillance summaries 62 Suppl 3:144–148

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2013a) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. doi:10.1161/01.cir.0000441139.02102.80

    Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2013b) Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):143–152

    Article  PubMed  Google Scholar 

  • Groysman LI, Emanuel BA, Kim-Tenser MA, Sung GY, Mack WJ (2011) Therapeutic hypothermia in acute ischemic stroke. Neurosurg Focus 30(6):E17. doi:10.3171/2011.4.FOCUS1154

    Article  PubMed  Google Scholar 

  • Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G (2011) Deferoxamine reduces cavity size in the brain after intracerebral hemorrhage in aged rats. Acta Neurochir Suppl 111:185–190. doi:10.1007/978-3-7091-0693-8_31

    Article  PubMed  Google Scholar 

  • Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G (2013) Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res 4(5):546–553. doi:10.1007/s12975-013-0270-5

    Article  CAS  PubMed  Google Scholar 

  • Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K (2013) Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol 256(1–2):1–6. doi:10.1016/j.jneuroim.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  • Hijioka M, Matsushita H, Hisatsune A, Isohama Y, Katsuki H (2011) Therapeutic effect of nicotine in a mouse model of intracerebral hemorrhage. J Pharmacol Exp Ther 338(3):741–749. doi:10.1124/jpet.111.182519

    Article  CAS  PubMed  Google Scholar 

  • Hijioka M, Matsushita H, Ishibashi H, Hisatsune A, Isohama Y, Katsuki H (2012) Alpha 7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience 222:10–19. doi:10.1016/j.neuroscience.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  • Indraswari F, Wang H, Lei B, James ML, Kernagis D, Warner DS, Dawson HN, Laskowitz DT (2012) Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J Neurotrauma 29(7):1388–1400. doi:10.1089/neu.2011.2117

    Article  PubMed  Google Scholar 

  • James ML, Wang H, Venkatraman T, Song P, Lascola CD, Laskowitz DT (2010) Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice. J Neurotrauma 27(1):217–228. doi:10.1089/neu.2009.1022

    Article  PubMed  Google Scholar 

  • James ML, Wang H, Cantillana V, Lei B, Kernagis DN, Dawson HN, Klaman LD, Laskowitz DT (2012) TT-301 inhibits microglial activation and improves outcome after central nervous system injury in adult mice. Anesthesiology 116(6):1299–1311. doi:10.1097/ALN.0b013e318253a02a

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Kang HM, Park C (2010) Voluntary exercise enhances survival and migration of neural progenitor cells after intracerebral haemorrhage in mice. Brain Inj 24(3):533–540. doi:10.3109/02699051003610458

    Article  PubMed  Google Scholar 

  • Jung KH, Chu K, Jeong SW, Han SY, Lee ST, Kim JY, Kim M, Roh JK (2004) HMG-CoA reductase inhibitor, atorvastatin, promotes sensorimotor recovery, suppressing acute inflammatory reaction after experimental intracerebral hemorrhage. Stroke 35(7):1744–1749. doi:10.1161/01.STR.0000131270.45822.85

    Article  CAS  PubMed  Google Scholar 

  • Karki K, Knight RA, Han Y, Yang D, Zhang J, Ledbetter KA, Chopp M, Seyfried DM (2009) Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage. Stroke 40(10):3384–3389. doi:10.1161/STROKEAHA.108.544395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y, Kume T, Shudo K, Akaike A (2009) Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 110(2):707–718. doi:10.1111/j.1471-4159.2009.06171.x

    Article  CAS  PubMed  Google Scholar 

  • Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731. doi:10.1016/S1474-4422(12)70104-7

    Article  CAS  PubMed  Google Scholar 

  • King MD, Alleyne CH Jr, Dhandapani KM (2013) TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci Lett 542:92–96. doi:10.1016/j.neulet.2013.02.051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klassman L (2011) Therapeutic hypothermia in acute stroke. J Neurosci Nurs 43(2):94–103

    Article  PubMed  Google Scholar 

  • Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, Blacker D (2013) Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke 44(9):2493–2499. doi:10.1161/STROKEAHA.113.000780

    Article  CAS  PubMed  Google Scholar 

  • Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, Wardlaw JM, Zhang JH, Sudlow CL (2012) Etiology of stroke and choice of models. Int J Stroke 7(5):398–406. doi:10.1111/j.1747-4949.2012.00838.x

    Article  PubMed  Google Scholar 

  • Kurauchi Y, Hisatsune A, Isohama Y, Sawa T, Akaike T, Shudo K, Katsuki H (2011) Midbrain dopaminergic neurons utilize nitric oxide/cyclic GMP signaling to recruit ERK that links retinoic acid receptor stimulation to up-regulation of BDNF. J Neurochem 116(3):323–333. doi:10.1111/j.1471-4159.2010.06916.x

    Article  CAS  PubMed  Google Scholar 

  • Laskowitz DT, McKenna SE, Song P, Wang H, Durham L, Yeung N, Christensen D, Vitek MP (2007) COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J Neurotrauma 24(7):1093–1107. doi:10.1089/neu.2006.0192

    Article  PubMed  Google Scholar 

  • Laskowitz DT, Lei B, Dawson HN, Wang H, Bellows ST, Christensen DJ, Vitek MP, James ML (2012) The apoE-mimetic peptide, COG1410, improves functional recovery in a murine model of intracerebral hemorrhage. Neurocrit Care 16(2):316–326. doi:10.1007/s12028-011-9641-5

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007a) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25(5):1204–1212. doi:10.1634/stemcells.2006-0409

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim KS, Park IH, Kim SU (2007b) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2(1):e156. doi:10.1371/journal.pone.0000156

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee HJ, Kim MK, Kim HJ, Kim SU (2009a) Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One 4(5):e5586. doi:10.1371/journal.pone.0005586

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee HJ, Park IH, Kim HJ, Kim SU (2009b) Human neural stem cells overexpressing glial cell line-derived Neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 16(9):1066–1076. doi:10.1038/gt.2009.51

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Lim IJ, Lee MC, Kim SU (2010) Human neural stem cells genetically modified to overexpress brain-derived Neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res 88(15):3282–3294. doi:10.1002/jnr.22474

    Article  CAS  PubMed  Google Scholar 

  • Lei B, Dawson HN, Roulhac-Wilson B, Wang H, Laskowitz DT, James ML (2013) Tumor necrosis factor alpha antagonism improves neurological recovery in murine intracerebral hemorrhage. J Neuroinflammation 10(1):103. doi:10.1186/1742-2094-10-103

    Article  PubMed Central  PubMed  Google Scholar 

  • Leonardo CC, Robbins S, Dore S (2012) Translating basic science research to clinical application: models and strategies for intracerebral hemorrhage. Front Neurol 3:85. doi:10.3389/fneur.2012.00085

    PubMed Central  PubMed  Google Scholar 

  • MacLellan CL, Colbourne F (2005) Mild to moderate hyperthermia does not worsen outcome after severe intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 25(8):1020–1029. doi:10.1038/sj.jcbfm.9600099

    Article  PubMed  Google Scholar 

  • MacLellan C, Shuaib A, Colbourne F (2002) Failure of delayed and prolonged hypothermia to favorably affect hemorrhagic stroke in rats. Brain Res 958(1):192–200

    Article  CAS  PubMed  Google Scholar 

  • MacLellan CL, Girgis J, Colbourne F (2004) Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 24(4):432–440. doi:10.1097/00004647-200404000-00008

    Article  PubMed  Google Scholar 

  • MacLellan CL, Davies LM, Fingas MS, Colbourne F (2006) The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke 37(5):1266–1270. doi:10.1161/01.STR.0000217268.81963.78

    Article  PubMed  Google Scholar 

  • MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, Colbourne F (2008) Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab 28(3):516–525. doi:10.1038/sj.jcbfm.9600548

    Article  CAS  PubMed  Google Scholar 

  • MacLellan CL, Clark DL, Silasi G, Colbourne F (2009) Use of prolonged hypothermia to treat ischemic and hemorrhagic stroke. J Neurotrauma 26(3):313–323. doi:10.1089/neu.2008.0580

    Article  PubMed  Google Scholar 

  • MacLellan CL, Plummer N, Silasi G, Auriat AM, Colbourne F (2011) Rehabilitation promotes recovery after whole blood-induced intracerebral hemorrhage in rats. Neurorehabil Neural Repair 25(5):477–483. doi:10.1177/1545968310395602

    Article  PubMed  Google Scholar 

  • Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765. doi:10.1038/nrn2212

    Article  CAS  PubMed  Google Scholar 

  • Matsushita H, Hijioka M, Hisatsune A, Isohama Y, Shudo K, Katsuki H (2011) A retinoic acid receptor agonist Am80 rescues neurons, attenuates inflammatory reactions, and improves behavioral recovery after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 31(1):222–234. doi:10.1038/jcbfm.2010.80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsushita H, Hijioka M, Hisatsune A, Isohama Y, Shudo K, Katsuki H (2012) Natural and synthetic retinoids afford therapeutic effects on intracerebral hemorrhage in mice. Eur J Pharmacol 683(1–3):125–131. doi:10.1016/j.ejphar.2012.03.023

    Article  CAS  PubMed  Google Scholar 

  • Mey J (2001) Retinoic acid as a regulator of cytokine signaling after nerve injury. Zeitschrift fur Naturforschung C. J Biosci 56(3–4):163–176

    CAS  Google Scholar 

  • Mey J (2006) New therapeutic target for CNS injury? The role of retinoic acid signaling after nerve lesions. J Neurobiol 66(7):757–779. doi:10.1002/neu.20238

    Article  CAS  PubMed  Google Scholar 

  • Minino AM, Murphy SL, Xu J, Kochanek KD (2011) Deaths: final data for 2008. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 59 (10):1–126

  • Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2003) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Neurosurg Focus 15(4):ECP4

    Article  PubMed  Google Scholar 

  • Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF (2004) Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab 24(5):487–494. doi:10.1097/00004647-200405000-00002

    Article  PubMed  Google Scholar 

  • Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G (2010) Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke 41(2):375–382. doi:10.1161/STROKEAHA.109.569830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penner M, Silasi G, Wowk S, Warkentin L, Colbourne F (2011) Brief hyperthermia does not worsen outcome after Striatal hemorrhage in rats. Curr Neurovasc Res 8(1):35–43

    Article  PubMed  Google Scholar 

  • Polderman KH, Herold I (2009) Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med 37(3):1101–1120. doi:10.1097/CCM.0b013e3181962ad5

    Article  PubMed  Google Scholar 

  • Pontes-Neto OM, Auriel E, Greenberg SM (2012) Advances in our understanding of the pathophysiology, detection and management of cerebral amyloid angiopathy. Eur Neurol Rev 7(2):134–139

    PubMed Central  PubMed  Google Scholar 

  • Rolland WB 2nd, Manaenko A, Lekic T, Hasegawa Y, Ostrowski R, Tang J, Zhang JH (2011) FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir Suppl 111:213–217. doi:10.1007/978-3-7091-0693-8_36

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH (2013) Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 241:45–55. doi:10.1016/j.expneurol.2012.12.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M (1990) Collagenase-induced intracerebral hemorrhage in rats. Stroke 21(5):801–807

    Article  CAS  PubMed  Google Scholar 

  • Rynkowski MA, Kim GH, Komotar RJ, Otten ML, Ducruet AF, Zacharia BE, Kellner CP, Hahn DK, Merkow MB, Garrett MC, Starke RM, Cho BM, Sosunov SA, Connolly ES (2008) A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc 3(1):122–128. doi:10.1038/nprot.2007.513

    Article  CAS  PubMed  Google Scholar 

  • Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K (2011) Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 70(4):646–656. doi:10.1002/ana.22528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seyfried D, Han Y, Lu D, Chen J, Bydon A, Chopp M (2004) Improvement in neurological outcome after administration of atorvastatin following experimental intracerebral hemorrhage in rats. J Neurosurg 101(1):104–107. doi:10.3171/jns.2004.101.1.0104

    Article  CAS  PubMed  Google Scholar 

  • Sheng SP, Lei B, James ML, Lascola CD, Venkatraman TN, Jung JY, Maze M, Franks NP, Pearlstein RD, Sheng H, Warner DS (2012) Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage. Anesthesiology 117(6):1262–1275. doi:10.1097/ALN.0b013e3182746b81

    Article  CAS  PubMed  Google Scholar 

  • Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343. doi:10.1046/j.1471-4159.2004.02347.x

    Article  CAS  PubMed  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11(4):308–322. doi:10.1177/1073858405275175

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Dai M, Wang Y, Wang W, Sun Q, Yang GY, Bian L (2011) Neuroprotection and sensorimotor functional improvement by curcumin after intracerebral hemorrhage in mice. J Neurotrauma 28(12):2513–2521. doi:10.1089/neu.2011.1958

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andra M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y (2006) Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83(8):1461–1470. doi:10.1002/jnr.20850

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu Y, Ishida A, Hamakawa M, Tamakoshi K, Jung CG, Ishida K (2010) Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats. Brain Res 1355:165–173. doi:10.1016/j.brainres.2010.07.070

    Article  CAS  PubMed  Google Scholar 

  • Tamakoshi K, Ishida A, Takamatsu Y, Hamakawa M, Nakashima H, Shimada H, Ishida K (2014) Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats. Behav Brain Res 260:34–43. doi:10.1016/j.bbr.2013.11.034

    Article  PubMed  Google Scholar 

  • Tang YJ, Wang S, Zhu MW, Sun YL, Zhao JZ (2013) Severe pathological manifestation of cerebral amyloid angiopathy correlates with poor outcome from cerebral amyloid angiopathy related intracranial hemorrhage. Chin Med J 126(4):603–608

    CAS  PubMed  Google Scholar 

  • Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74(8):969–985

    Article  CAS  PubMed  Google Scholar 

  • Wan S, Hua Y, Keep RF, Hoff JT, Xi G (2006) Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl 96:199–202

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW (2013) Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 44(9):2545–2552. doi:10.1161/STROKEAHA.113.001038

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Sun J, Li J, Wang L, Hall CL, Dix TA, Mohamad O, Wei L, Yu SP (2013) Acute and delayed protective effects of pharmacologically induced hypothermia in an intracerebral hemorrhage stroke model of mice. Neuroscience 252:489–500. doi:10.1016/j.neuroscience.2013.07.052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D (2005) Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 21(1):187–196. doi:10.1111/j.1460-9568.2004.03829.x

    Article  PubMed  Google Scholar 

  • Wu TC, Grotta JC (2013) Hypothermia for acute ischaemic stroke. Lancet Neurol 12(3):275–284. doi:10.1016/S1474-4422(13)70013-9

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wu T, Xu X, Wang J, Wang J (2011) Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab 31(5):1243–1250. doi:10.1038/jcbfm.2010.209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5(1):53–63. doi:10.1016/S1474-4422(05)70283-0

    Article  PubMed  Google Scholar 

  • Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A, Yong VW (2010) Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol 176(3):1193–1202. doi:10.2353/ajpath.2010.090361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao Y, Tsirka SE (2012) The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 60(6):908–918. doi:10.1002/glia.22323

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J (2007) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61(4):352–362. doi:10.1002/ana.21097

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2010) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35(3):374–379. doi:10.1007/s11064-009-0065-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH grant NS077521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balachandar Kathirvelu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kathirvelu, B., Carmichael, S.T. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery. Metab Brain Dis 30, 449–459 (2015). https://doi.org/10.1007/s11011-014-9559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9559-7

Keywords

  • ICH
  • Collagenase
  • Autologous blood
  • Functional recovery