Skip to main content

Advertisement

Log in

Caecal ligation and puncture induced sepsis in the rat results in increased brain water content and perimicrovessel oedema

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

To investigate brain water content and ultrastructure in a rat caecal ligation and puncture (CLP) model of sepsis, adult male Wistar rats were assigned to one of the following experimental groups: CLP, Un-operated or Sham. CLP was performed under anaesthesia, Sham rats were exposed to anaesthesia, laparotomy and caecal mobilisation and Un-operated rats did not experience anaesthesia or surgery. CLP and Sham rats were sacrificed 18–20 h following recovery from surgery and Un-operated rats were sacrificed at the same time. Frontal cortex samples (CLP n = 9; Un-operated n = 10; Sham n = 8) were taken immediately post mortem and their water content determined using gravimetry. Similar samples were taken from other rats (CLP n = 8; Un-operated n = 8; Sham n = 8), processed for electron microscopy and subjected to morphometric analysis. There was significantly more brain water in CLP than Un-operated (P < 0.01) and Sham (P < 0.05) rats. Electron microscopy revealed significantly more peri-microvessel oedema in CLP than Un-operated (P < 0.001) and Sham rats (P < 0.05). Microvessel endothelial cell lumen cross-sectional area was significantly smaller in CLP than Un-operated (P < 0.001) and Sham (P < 0.05) rats and microvessel endothelial cell cross-sectional area was significantly smaller in CLP than Un-operated (P < 0.05) rats. Significantly more endothelial cell cytoplasmic area was occupied by mitochondria in CLP than Un-operated (P < 0.05) and Sham (P < 0.05) rats. However, experimental group did not affect the number of mitochondria present in endothelial cell profiles, or their cross-sectional area. Therefore, sepsis-induced cerebral oedema involves an increase in and a redistribution of brain water, together with ultrastructural changes to cerebral microvessels and adjacent tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ari I, Kafa IM, Kurt MA (2006) Perimicrovascular edema in the frontal cortex in a rat model of intraperitoneal sepsis. Exp Neurol 198:242–249

    Article  PubMed  Google Scholar 

  • Avtan SM, Kaya M, Orhan N, Arslan A, Arican N, Toklu AS, Gürses C, Elmas I, Kucuk M, Ahishali B (2011) The effect of hyperbaric oxygen therapy on blood–brain barrier permeability in septic rats. Brain Res 1412:63–72

    CAS  PubMed  Google Scholar 

  • Basler T, Meier-Hellmann A, Bredle D, Reinhart K (2002) Amino acid imbalance early in septic encephalopathy. Intensive Care Med 28:293–298

    Article  PubMed  Google Scholar 

  • Brooks HF, Osabutey CK, Moss RF, Andrews PL, Davies DC (2007) Caecal ligation and puncture in the rat mimics the pathophysiological changes in human sepsis and causes multi-organ dysfunction. Metab Brain Dis 22:353–373

    Article  CAS  PubMed  Google Scholar 

  • Brown AW, Brierley JB (1968) The nature, distribution and earliest stages of anoxic-ischaemic nerve cell damage in the rat brain as defined by the optical microscope. Brit J Exp Pathol 49:87–106

    CAS  Google Scholar 

  • Brown AW, Brierley JB (1973) The earliest alteration in rat neurons and astrocytes after anoxia-ischemia. Acta Neuropathol (Berl) 23:9–22

    Article  CAS  Google Scholar 

  • Clawson CC, Harmann JF, Vernier RL (1966) Electron microscopy of the effect of Gram-negative endotoxin on the blood–brain barrier. J Comp Neurol 127:183–198

    Article  CAS  PubMed  Google Scholar 

  • Consales G, De Gaudio AR (2005) Sepsis associated encephalopathy. Minerva Anestesiol 71:39–52

    CAS  PubMed  Google Scholar 

  • Davies DC (2002) Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200:639–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng X, Wang X, Andersson R (1995) Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J Appl Physiol 78:2052–2061

    CAS  PubMed  Google Scholar 

  • du Moulin GC, Paterson D, Hedley-Whyte J, Broitman SA (1985) E. coli peritonitis and bacteremia cause increased blood–brain barrier permeability. Brain Res 340:261–268

    Article  PubMed  Google Scholar 

  • Esen F, Erden T, Aktan D, Orhan M, Kaya M, Eraksoy H, Cakar N, Telci L (2005) Effect of magnesium sulphate administration on blood–brain barrier in a rat model of intraperitoneal sepsis: A randomized controlled experimental study. Crit Care 9:R18–23

    Article  PubMed Central  PubMed  Google Scholar 

  • Finelli PF, Uphoff DF (2004) Magnetic resonance imaging abnormalities with septic encephalopathy. J Neurol Neurosurg Psychiatry 75:1189–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hariri RJ, Ghajar JB, Bahramian K, Sharif S, Barie PS (1993) Alterations in intracranial pressure and cerebral blood volume in endotoxemia. Surgery Gynecology Obstetrics 176:155–166

    CAS  Google Scholar 

  • Hirano A, Kawanami T, Llena JF (1994) Electron microscopy of the blood–brain barrier in disease. Microsc Res Tech 27:543–556

    Article  CAS  PubMed  Google Scholar 

  • Höllinger P, Zürcher R, Schroth G, Mattle HP (2000) Diffusion magnetic resonance imaging findings in cerebritis and brain abscesses in a patient with septic encephalopathy. J Neurol 247:232–234

    Article  PubMed  Google Scholar 

  • Hopkins RO, Weaver LK, Chan KJ, Orme JF (2004) Quality of life, emotional, and cognitive function following acute respiratory distress syndrome. J Int Neuropsychol Soc 10:1005–1017

    PubMed  Google Scholar 

  • Hossman KA, Grosse Ophoff B, Schmidt-Kastner R, Oschlies U (1985) Mitochondrial calcium sequestration in cortical and hippocampal neurons after prolonged ischemia of the cat brain. Acta Neuropathol 68:230–238

    Article  Google Scholar 

  • Houthoff HJ, Go KG (1980) Endogenous versus exogenous protein tracer passage in blood–brain barrier damage. Adv Neurol 28:75–81

    CAS  PubMed  Google Scholar 

  • Ikrényi K, Dóra E, Jajós F, Kovách AG (1976) Metabolic and electron microscopic studies post mortem in brain mitochondria. Adv Exp Med Biol 75:159–164

    Article  PubMed  Google Scholar 

  • Jeppson B, Freund HR, Gimmon Z, James JH, von Neyenfeldt MF, Fischer JE (1981) Blood–brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 141:136–141

    Article  Google Scholar 

  • Kafa IM, Ari I, Kurt MA (2007) The peri-microvascular edema in hippocampal CA1 area in a rat model of sepsis. Neuropathology 27:213–220

    Article  PubMed  Google Scholar 

  • Koizumi J, Shiraishi H (1970) Fine structural changes of mitochondria in cerebral edema and dehydration. Archives Histologicum Japonicum 32:241–249

    Article  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman A (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med 6:159–162

    Article  CAS  PubMed  Google Scholar 

  • Marmarou A, Poll W, Shulman K, Bhagavan H (1978) A simple gravimetric technique for measurement of cerebral edema. J Neurosurg 49:530–537

    Article  CAS  PubMed  Google Scholar 

  • Morton DB, Griffiths PH (1985) Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec 116:431–436

    Article  CAS  PubMed  Google Scholar 

  • Moss RF, Parmar NK, Tighe D, Davies DC (2004) Adrenergic agents modify cerebral edema and microvessel ultrastructure in porcine sepsis. Crit Care Med 32:1916–1921

    CAS  PubMed  Google Scholar 

  • Nielsen S, Bagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  • Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci 96:461–466

    Article  CAS  PubMed  Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labelling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rothenhäusler HB, Ehrentraut S, Stoll C, Schelling G, Kapfhammer HP (2001) The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study. Gen Hosp Psychiatry 23:90–96

    Article  PubMed  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Ann Rev Neurosci 22:11–28

    Article  CAS  PubMed  Google Scholar 

  • Sato T (1968) A modified method for lead staining of thin sections. J Electron Microsc 17:158–159

    CAS  Google Scholar 

  • Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland JP, Nardi O, de la Grandmaison GL, Aboab J, Gray F, Menon D, Annane D (2007) Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med 33:798–806

    Article  PubMed  Google Scholar 

  • Sprung CL, Peduzzi PN, Shatney CH, Schein RM, Wilson MF, Sheagren JN, Hinshaw LB (1990) Impact of encephalopathy on mortality in the sepsis syndrome. Crit Care Med 18:801–806

    CAS  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 6:31–43

    Article  Google Scholar 

  • Tsao N, Hsu HP, Wu CM, Liu CC, Lei HY (2001) Tumour necrosis factor-alpha causes an increase in blood–brain barrier permeability during sepsis. J Med Microbiol 50:812–821

    CAS  PubMed  Google Scholar 

  • Wichterman K, Baue A, Chaudry I (1980) Sepsis and septic shock: a review of laboratory models and a proposal. J Surg Res 29:189–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

H. F. Brooks was supported by an Anatomical Society post-graduate studentship.

Conflict of Interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ceri Davies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, H.F., Moss, R.F., Davies, N.A. et al. Caecal ligation and puncture induced sepsis in the rat results in increased brain water content and perimicrovessel oedema. Metab Brain Dis 29, 837–843 (2014). https://doi.org/10.1007/s11011-014-9555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9555-y

Keywords

Navigation