Skip to main content
Log in

Recent advances in the pharmacologic treatment of spinal cord injury

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

A need exists for the effective treatment of individuals suffering from spinal cord injury (SCI). Recent advances in the understanding of the pathophysiological mechanisms occurring in SCI have resulted in an expansion of new therapeutic targets. This review summarizes both preclinical and clinical findings investigating the mechanisms and cognate pharmacologic therapeutics targeted to modulate hypoxia, ischemia, excitotoxicity, inflammation, apoptosis, epigenetic alterations, myelin regeneration and scar remodeling. Successful modulation of these targets has been demonstrated in both preclinical and clinical studies with agents such as Oxycyte, Minocycline, Riluzole, Premarin, Cethrin, and ATI-355. The translation of these agents into clinical studies highlights the progress the field has made in the past decade. SCI proves to be a complex condition; the numerous pathophysiological mechanisms occurring at varying time points suggests that a single agent approach to the treatment of SCI may not be optimal. As the field continues to mature, the hope is that the knowledge gained from these studies will be applied to the development of an effective multi-pronged treatment strategy for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdanipour A, Schluesener HJ, Tiraihi T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16(2):90–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmed Z, Bansal D, Tizzard K, Surey S, Esmaeili M, Douglas MR, Gonzalez AM, Berry M, Logan A (2013) Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol Dis. doi:10.1016/j.nbd.2013.12.008

    PubMed Central  Google Scholar 

  • Akdemir O, Ucankale M, Karaoglan A, Barut S, Sagmanligil A, Bilguvar K, Cirakoglu B, Sahan E, Colak A (2008) Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci: Off J Neurosurg Soc Australa 15(10):1130–1136. doi:10.1016/j.jocn.2007.08.011

    Article  CAS  Google Scholar 

  • Anthes DL, Theriault E, Tator CH (1995) Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury. Brain Res 702(1–2):1–16

    Article  CAS  PubMed  Google Scholar 

  • Arataki S, Tomizawa K, Moriwaki A, Nishida K, Matsushita M, Ozaki T, Kunisada T, Yoshida A, Inoue H, Matsui H (2005) Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22(3):398–406. doi:10.1089/neu.2005.22.398

    Article  PubMed  Google Scholar 

  • Banik NL, Powers JM, Hogan EL (1980) The effects of spinal cord trauma on myelin. J Neuropathol Exp Neurol 39(3):232–244

    Article  CAS  PubMed  Google Scholar 

  • Banik NL, Hogan EL, Powers JM, Whetstine LJ (1982) Degradation of cytoskeletal proteins in experimental spinal cord injury. Neurochem Res 7(12):1465–1475

    Article  CAS  PubMed  Google Scholar 

  • Bell MT, Puskas F, Agoston VA, Cleveland JC Jr, Freeman KA, Gamboni F, Herson PS, Meng X, Smith PD, Weyant MJ, Fullerton DA, Reece TB (2013) Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128(11 Suppl 1):S152–S156. doi:10.1161/CIRCULATIONAHA.112.000024

    Article  CAS  PubMed  Google Scholar 

  • Bracken MB (1992) Pharmacological treatment of acute spinal cord injury: current status and future prospects. Paraplegia 30(2):102–107. doi:10.1038/sc.1992.34

    Article  CAS  PubMed  Google Scholar 

  • Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL Jr et al (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA: J Am Med Assoc 251(1):45–52

    Article  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411. doi:10.1056/NEJM199005173222001

    Article  CAS  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 h or tirilazad mesylate for 48 h in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA: J Am Med Assoc 277(20):1597–1604

    Article  CAS  Google Scholar 

  • Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202(1):145–156. doi:10.1084/jem.20041918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brambilla R, Hurtado A, Persaud T, Esham K, Pearse DD, Oudega M, Bethea JR (2009) Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem 110(2):765–778. doi:10.1111/j.1471-4159.2009.06190.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME (2000) Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci: Off J Soc Neurosci 20(21):8061–8068

    CAS  Google Scholar 

  • Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci: Off J Soc Neurosci 31(3):944–953. doi:10.1523/JNEUROSCI.3566-10.2011

    Article  CAS  Google Scholar 

  • Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain: J Neurol 130(Pt 11):2977–2992. doi:10.1093/brain/awm179

    Article  Google Scholar 

  • Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain: J Neurol 135(Pt 4):1224–1236. doi:10.1093/brain/aws072

    Article  Google Scholar 

  • Chatzipanteli K, Yanagawa Y, Marcillo AE, Kraydieh S, Yezierski RP, Dietrich WD (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J Neurotrauma 17(4):321–332

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Yeh CH, Lin MY, Kang CY, Chu CC, Chang FM, Wang JJ (2010) Premarin improves outcomes of spinal cord injury in male rats through stimulating both angiogenesis and neurogenesis. Crit Care Med 38(10):2043–2051. doi:10.1097/CCM.0b013e3181ef44dc

    PubMed  Google Scholar 

  • Cho DC, Cheong JH, Yang MS, Hwang SJ, Kim JM, Kim CH (2011) The effect of minocycline on motor neuron recovery and neuropathic pain in a rat model of spinal cord injury. J Korean Neurosurg Soc 49(2):83–91. doi:10.3340/jkns.2011.49.2.83

    Article  PubMed Central  PubMed  Google Scholar 

  • David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399. doi:10.1038/nrn3053

    Article  CAS  PubMed  Google Scholar 

  • De Nicola AF, Gonzalez SL, Labombarda F, Deniselle MC, Garay L, Guennoun R, Schumacher M (2006) Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination. J Molec Neurosci MN 28(1):3–15. doi:10.1385/JMN:30:3:341

    Article  Google Scholar 

  • Dididze M, Green BA, Dalton Dietrich W, Vanni S, Wang MY, Levi AD (2013) Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 51(5):395–400. doi:10.1038/sc.2012.161

    Article  CAS  PubMed  Google Scholar 

  • Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221

    Article  CAS  PubMed  Google Scholar 

  • Donovan WH (2007) Donald Munro Lecture. Spinal cord injury–past, present, and future. J Spinal Cord Med 30(2):85–100

    PubMed Central  PubMed  Google Scholar 

  • Ducker TB, Hamit HF (1969) Experimental treatments of acute spinal cord injury. J Neurosurg 30(6):693–697. doi:10.3171/jns.1969.30.6.0693

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Genovese T, Caminiti R, Bramanti P, Meli R, Cuzzocrea S (2009) Melatonin reduces stress-activated/mitogen-activated protein kinases in spinal cord injury. J Pineal Res 46(1):79–86. doi:10.1111/j.1600-079X.2008.00633.x

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Paterniti I, Mazzon E, Genovese T, Galuppo M, Meli R, Bramanti P, Cuzzocrea S (2011) MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma. BMC Neurosci 12:31. doi:10.1186/1471-2202-12-31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796. doi:10.1089/neu.2011.1765

    Article  PubMed  Google Scholar 

  • Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain: J Neurol 129(Pt 12):3249–3269. doi:10.1093/brain/awl296

    Article  Google Scholar 

  • Fujimoto T, Nakamura T, Ikeda T, Takagi K (2000) Potent protective effects of melatonin on experimental spinal cord injury. Spine 25(7):769–775

    Article  CAS  PubMed  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury—a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324(26):1829–1838. doi:10.1056/NEJM199106273242601

    Article  CAS  PubMed  Google Scholar 

  • Geisler FH, Coleman WP, Grieco G, Poonian D (2001) The Sygen multicenter acute spinal cord injury study. Spine 26(24 Suppl):S87–S98

    Article  CAS  PubMed  Google Scholar 

  • Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94(6):695–698

    Article  CAS  PubMed  Google Scholar 

  • Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci: Off J Soc Neurosci 24(16):4043–4051. doi:10.1523/JNEUROSCI.5343-03.2004

    Article  CAS  Google Scholar 

  • Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2013) A prospective, multicenter, phase i matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma. doi:10.1089/neu.2013.2969

    PubMed Central  Google Scholar 

  • Gwak YS, Kang J, Unabia GC, Hulsebosch CE (2012) Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 234(2):362–372. doi:10.1016/j.expneurol.2011.10.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25(5):E14. doi:10.3171/foc.2008.25.11.e14

    Article  PubMed  Google Scholar 

  • Hunt D, Coffin RS, Anderson PN (2002) The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol 31(2):93–120

    Article  CAS  PubMed  Google Scholar 

  • Joint Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (2013) Guideline for the management of acute cervical and spinal cord injuries. Neurosurgery 72 (supplement 2):1–259. http://neurosurgerycns.wordpress.com/2013/02/20/guidelines-for-the-management-of-acute-cervical-spine-and-spinal-cord-injury/. 2013

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci: Off J Soc Neurosci 29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  Google Scholar 

  • Kwon BK, Sekhon LH, Fehlings MG (2010) Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine 35(21 Suppl):S263–S270. doi:10.1097/BRS.0b013e3181f3286d

    Article  PubMed  Google Scholar 

  • Labombarda F, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2011) Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231(1):135–146. doi:10.1016/j.expneurol.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, Kang B, Zheng B (2010) Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 66(5):663–670. doi:10.1016/j.neuron.2010.05.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JY, Choi SY, Oh TH, Yune TY (2012) 17beta-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury. Endocrinology 153(8):3815–3827. doi:10.1210/en.2012-1068

    Article  CAS  PubMed  Google Scholar 

  • Levi AD, Casella G, Green BA, Dietrich WD, Vanni S, Jagid J, Wang MY (2010) Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66(4):670–677. doi:10.1227/01.NEU.0000367557.77973.5F

    Article  PubMed  Google Scholar 

  • Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5(9):R66. doi:10.1186/gb-2004-5-9-r66

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547(2):344–348

    Article  CAS  PubMed  Google Scholar 

  • Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59(4):606–619. doi:10.1002/ana.20798

    Article  CAS  PubMed  Google Scholar 

  • Lu WH, Wang CY, Chen PS, Wang JW, Chuang DM, Yang CS, Tzeng SF (2013) Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 91(5):694–705. doi:10.1002/jnr.23200

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, Saatman KE, Neumar RW (2013) Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis 56:34–46. doi:10.1016/j.nbd.2013.03.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahon RT, Auker CR, Bradley SG, Mendelson A, Hall AA (2013) The emulsified perfluorocarbon Oxycyte improves spinal cord injury in a swine model of decompression sickness. Spinal Cord 51(3):188–192. doi:10.1038/sc.2012.135

    Article  CAS  PubMed  Google Scholar 

  • McDowell ML, Das A, Smith JA, Varma AK, Ray SK, Banik NL (2011) Neuroprotective effects of genistein in VSC4.1 motoneurons exposed to activated microglial cytokines. Neurochem Int 59(2):175–184. doi:10.1016/j.neuint.2011.04.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18. doi:10.1016/j.ejphar.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  • Momeni HR, Kanje M (2006) Calpain inhibitors delay injury-induced apoptosis in adult mouse spinal cord motor neurons. Neuroreport 17(8):761–765. doi:10.1097/01.wnr.0000220127.01597.04

    Article  CAS  PubMed  Google Scholar 

  • Muradov JM, Hagg T (2013) Intravenous infusion of magnesium chloride improves epicenter blood flow during the acute stage of contusive spinal cord injury in rats. J Neurotrauma 30(10):840–852. doi:10.1089/neu.2012.2670

    Article  PubMed Central  PubMed  Google Scholar 

  • Muradov JM, Ewan EE, Hagg T (2013) Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats. Exp Neurol 249:59–73. doi:10.1016/j.expneurol.2013.08.009

    Article  PubMed Central  PubMed  Google Scholar 

  • Ok JH, Kim YH, Ha KY (2012) Neuroprotective effects of hypothermia after spinal cord injury in rats: comparative study between epidural hypothermia and systemic hypothermia. Spine 37(25):E1551–E1559. doi:10.1097/BRS.0b013e31826ff7f1

    Article  PubMed  Google Scholar 

  • Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H (2010) Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17 beta-oestradiol treatment. Brain: J Neurol 133(Pt 4):1013–1025. doi:10.1093/brain/awq049

    Article  Google Scholar 

  • Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320(3):1002–1012. doi:10.1124/jpet.106.113472

    Article  CAS  PubMed  Google Scholar 

  • Park K, Lee Y, Park S, Lee S, Hong Y, Kil Lee S (2010) Synergistic effect of melatonin on exercise-induced neuronal reconstruction and functional recovery in a spinal cord injury animal model. J Pineal Res 48(3):270–281. doi:10.1111/j.1600-079X.2010.00751.x

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee SK, Park K, Lee Y, Hong Y, Lee S, Jeon JC, Kim JH, Lee SR, Chang KT (2012) Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury. J Pineal Res 52(1):107–119. doi:10.1111/j.1600-079X.2011.00925.x

    Article  CAS  PubMed  Google Scholar 

  • Ray SK, Wilford GG, Matzelle DC, Hogan EL, Banik NL (1999) Calpeptin and methylprednisolone inhibit apoptosis in rat spinal cord injury. Ann N Y Acad Sci 890:261–269

    Article  CAS  PubMed  Google Scholar 

  • Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL (2001) Cell death in spinal cord injury (SCI) requires de novo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann N Y Acad Sci 939:436–449

    Article  CAS  PubMed  Google Scholar 

  • Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42(2):169–185

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Young W (2013) Managing Inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013:945034. doi:10.1155/2013/945034

    PubMed Central  PubMed  Google Scholar 

  • Samantaray S, Sribnick EA, Das A, Knaryan VH, Matzelle DD, Yallapragada AV, Reiter RJ, Ray SK, Banik NL (2008) Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J Pineal Res 44(4):348–357. doi:10.1111/j.1600-079X.2007.00534.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samantaray S, Das A, Thakore NP, Matzelle DD, Reiter RJ, Ray SK, Banik NL (2009) Therapeutic potential of melatonin in traumatic central nervous system injury. J Pineal Res 47(2):134–142. doi:10.1111/j.1600-079X.2009.00703.x

    Article  CAS  PubMed  Google Scholar 

  • Samantaray S, Smith JA, Das A, Matzelle DD, Varma AK, Ray SK, Banik NL (2011) Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 36(10):1809–1816. doi:10.1007/s11064-011-0498-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schiaveto-de-Souza A, da Silva CA, Defino HL, Del Bel EA (2013) Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord. Braz J Med Biol Res Rev Bras Pesquisas Med Biol/Soc Bras Biofis [et al] 46(4):348–358

    CAS  Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343(6255):269–272. doi:10.1038/343269a0

    Article  CAS  PubMed  Google Scholar 

  • Schomberg D, Olson JK (2012) Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 234(2):262–270. doi:10.1016/j.expneurol.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JL, Highsmith JM, Young HF, Mathern BE (2008) Reduction of hypoxia by perfluorocarbon emulsion in a traumatic spinal cord injury model. J Neurosurg Spine 9(2):213–220. doi:10.3171/spi/2008/9/8/213

    Article  PubMed  Google Scholar 

  • Schwab ME, Kapfhammer JP, Bandtlow CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16:565–595. doi:10.1146/annurev.ne.16.030193.003025

    Article  CAS  PubMed  Google Scholar 

  • Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94(2 Suppl):245–256

    CAS  PubMed  Google Scholar 

  • Siriphorn A, Dunham KA, Chompoopong S, Floyd CL (2012) Postinjury administration of 17beta-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 520(12):2630–2646. doi:10.1002/cne.23056

    Article  CAS  PubMed  Google Scholar 

  • Sonmez E, Kabatas S, Ozen O, Karabay G, Turkoglu S, Ogus E, Yilmaz C, Caner H, Altinors N (2013) Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine 38(15):1253–1259. doi:10.1097/BRS.0b013e3182895587

    Article  PubMed  Google Scholar 

  • Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69(4):1592–1600

    Article  CAS  PubMed  Google Scholar 

  • Sribnick EA, Matzelle DD, Banik NL, Ray SK (2007) Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem Res 32(12):2210–2216. doi:10.1007/s11064-007-9433-7

    Article  CAS  PubMed  Google Scholar 

  • Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL (2010) Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88(8):1738–1750. doi:10.1002/jnr.22337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci: Off J Soc Neurosci 24(9):2182–2190. doi:10.1523/jneurosci.5275-03.2004

    Article  CAS  Google Scholar 

  • Takeda M, Kawaguchi M, Kumatoriya T, Horiuchi T, Watanabe K, Inoue S, Konishi N, Furuya H (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine 36(23):1919–1924. doi:10.1097/BRS.0b013e3181ffda29

    Article  PubMed  Google Scholar 

  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26. doi:10.3171/jns.1991.75.1.0015

    Article  CAS  PubMed  Google Scholar 

  • Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86(3):483–492. doi:10.3171/jns.1997.86.3.0483

    Article  CAS  PubMed  Google Scholar 

  • Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101(9):3071–3076. doi:10.1073/pnas.0306239101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24(20):2134–2138

    Article  CAS  PubMed  Google Scholar 

  • Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM (2009) Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57(14):1521–1537. doi:10.1002/glia.20867

    Article  PubMed  Google Scholar 

  • Tsai EC, Tator CH (2005) Neuroprotection and regeneration strategies for spinal cord repair. Curr Pharm Des 11(10):1211–1222

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH (2006) Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke J Cereb Circ 37(7):1888–1894. doi:10.1161/01.STR.0000227259.15506.24

    Article  CAS  Google Scholar 

  • Watanabe K, Kawaguchi M, Kitagawa K, Inoue S, Konishi N, Furuya H (2012) Evaluation of the neuroprotective effect of minocycline in a rabbit spinal cord ischemia model. J Cardiothorac Vasc Anesth 26(6):1034–1038. doi:10.1053/j.jvca.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  • Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain: J Neurol 126(Pt 7):1628–1637. doi:10.1093/brain/awg178

    Article  Google Scholar 

  • Wu Y, Satkunendrarajah K, Teng Y, Chow DS, Buttigieg J, Fehlings MG (2013) Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma 30(6):441–452. doi:10.1089/neu.2012.2622

    Article  PubMed Central  PubMed  Google Scholar 

  • Yacoub A, Hajec MC, Stanger R, Wan W, Young H, Mathern BE (2013) Neuroprotective effects of perflurocarbon (Oxycyte) after contusive spinal cord injury. J Neurotrauma. doi:10.1089/neu.2013.3037

    Google Scholar 

  • York EM, Petit A, Roskams AJ (2013) Epigenetics of neural repair following spinal cord injury. Neurother: J Am Soc Exp Neuro Ther 10(4):757–770. doi:10.1007/s13311-013-0228-z

    Article  CAS  Google Scholar 

  • Yu CG, Joshi A, Geddes JW (2008) Intraspinal MDL28170 microinjection improves functional and pathological outcome following spinal cord injury. J Neurotrauma 25(7):833–840. doi:10.1089/neu.2007.0490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work cited here was supported in part by the NIH-NINDS, RO1 NS-31622; NS-45967. Additional support by the VA IOBX001262-01, Spinal Cord Injury Research Fund of the State of South Carolina, and from the Medical University of South Carolina Department of Neurosciences (Neurosurgery).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to April Cox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, A., Varma, A. & Banik, N. Recent advances in the pharmacologic treatment of spinal cord injury. Metab Brain Dis 30, 473–482 (2015). https://doi.org/10.1007/s11011-014-9547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9547-y

Keywords

Navigation