Skip to main content

Brain metabolite clearance: impact on Alzheimer’s disease

Abstract

Alzheimer’s Disease (AD) is a complex neurodegenerative disorder often associated with aging and characterized by several critical molecular changes that take place in the brain. Among the molecular hallmarks of AD, increased levels of amyloid β-peptide (Aβ) and the subsequent Aβ-derived damage are the most well-studied factors; however, despite the large amounts of effort and resources devoted to the study of AD and AD pathophysiology, the scientific community still awaits therapeutic alternatives capable of ensuring a better outcome for AD patients. In 2012, Cramer et al. (Science 335:1503-1506 2012) astonished the scientific community by rescuing behavioral and cognitive impairments in AD mouse models via oral administration of bexarotene, a drug used to treat some types of skin cancer. Moreover, these authors demonstrated that bexarotene, a retinoid X receptor (RXR) agonist, exerts major effects on Aβ levels, mainly through increased apolipoprotein E (ApoE) expression. Apart from the valid questions addressed in Cramer’s work, only a few attempts have been made to explain the effects of bexarotene. Most of these explanations have been solely based on the ability of bexarotene to reduce Aβ levels and not on the mechanisms that lead to such a reduction. Although it is well known that an imbalance in the Aβ production/excretion rate is the basis of increased Aβ levels in AD, no further explanations have been proposed to address the potential involvement of the blood-brain barrier (BBB), a critical Aβ-clearance structure, in the bexarotene-mediated effects. Moreover, no attempt has been made to explain how the different effects observed after bexarotene administration are connected to each other. Based on current information and on our own experience with nuclear receptors (NR), we offer new perspectives on the mechanisms of bexarotene action, which should help to improve our knowledge of NRs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abramov AY, Canevari L, Duchen MR (2004) β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575

    CAS  PubMed  Article  Google Scholar 

  • Alzheimer’s Association (2012) Alzheimer’s disease facts and figures. Alzheimers Dement 8:131–168

    Article  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031. doi:10.1016/S0140-6736(10)61349-9

    PubMed  Article  Google Scholar 

  • Barroso E, del Valle J, Porquet D et al (2013) Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochim Biophys Acta 1832:1241–1248

    CAS  PubMed  Article  Google Scholar 

  • Bhel C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827

    Article  Google Scholar 

  • Carvajal FJ, Inestrosa NC (2011) Interaction of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Caspersen C, Wang N, Yao J et al (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    CAS  PubMed  Google Scholar 

  • Cavalluci V, D’Amelio M, Cecconi F (2012) Aβ toxicity in Alzheimer’s disease. Mol Neurobiol 45:366–378

    Article  Google Scholar 

  • Chawla A, Boisvert WA, Lee CH et al (2001) A PPAR gamma-LRX-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171

    CAS  PubMed  Article  Google Scholar 

  • Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, Lin TN (2012) Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol Neurobiol. doi:10.1007/s12035-012-8259-8

    Google Scholar 

  • Cho DH, Lee EJ, Kwon KJ, Shin CY, Song KH, Park JH, Han SH (2013) Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem 126:685–695

    CAS  PubMed  Article  Google Scholar 

  • Cramer PE, Cirrito JR, Wesson DW et al (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Crunkhorn S (2012) Neurodegenerative disease: RXR agonist reverses Alzheimer’s disease. Nat Rev Drug Discov 11:271. doi:10.1038/nrd3706

    CAS  PubMed  Article  Google Scholar 

  • Dawson MI, Xia Z (2012) The retinoid X receptor and their ligands. Biochim Biophys Acta 1821:21–56

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Deane R, Singh I, Sagare AP, Bell RD et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC, Goldberg IJ (2013) Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 6:550–562

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Dumont M, Stack C, Elipenahli C et al (2012) Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet 21:5091–5105

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Eisai Manufacturing Ltd (EML), Targretin information; www.drugs.com/uk/targretin-capsules-1302.html. Accessed 17 Jun 2013

  • Fantini J, Di Scala C, Yahi N, Troadec JD, Sadelli K, Chahinian H, Garmy N (2014) Bexarotene blocks calcium-permeable ion channels formed by neurotoxic Alzheimer’s β-amyloid peptides. ACS Chem Neurosci. doi:10.1021/cn400183w

    PubMed  Google Scholar 

  • FDA, Drug approval package, Tagretin; www.accessdata.fda.gov/drugsatfda_docs/nda/99/21055_Targretin.cfm. Accessed 17 Jun 2013

  • Fitz NF, Cronican AA, Lefterov I, Koldamova R (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi:10.1126/science.1235809

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC (2004) Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. Brain Res Brain Res Rev 47:275–289

    CAS  PubMed  Article  Google Scholar 

  • Fuenzalida K, Quintanilla R, Ramos P et al (2007) Peroxisome proliferator-activated receptor γ up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 282:37006–37015

    CAS  PubMed  Article  Google Scholar 

  • Gonzales FJ, Shah YM (2007) PPARα: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 246:2–8

    Article  Google Scholar 

  • Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964

    CAS  PubMed  Article  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    CAS  PubMed  Article  Google Scholar 

  • Haemmerle G, Moustafa T, Woelkart G et al (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1α. Nat Med 17:1076–1085

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Harman FS, Nicol CJ, Marin HE, Ward JM, Gonzales FJ, Peters JM (2004) Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med 10:481–483

    CAS  PubMed  Article  Google Scholar 

  • Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045

    CAS  PubMed  Article  Google Scholar 

  • Hollingshead HE, Killins RL, Borland MG, Girroir EE, Billin AN, Willson TM, Sharma AK, Amin S, Gonzales FJ, Peters JM (2007) Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 28:2641–2649

    CAS  PubMed  Article  Google Scholar 

  • Hondares E, Rosell M, Díaz-Delfin J et al (2011) Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286:43112–43122

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Hoque MT, Robillard KR, Bendayan R (2012) Regulation of breast cancer resistant protein by peroxisome proliferator-activated receptor α in human brain microvessel endothelial cells. Mol Pharmacol 81:598–609

    CAS  PubMed  Article  Google Scholar 

  • HUGO Gene Nomenclature Committee (HGNC) at http://www.genenames.org/genefamilies/NR, accessed 20 Jan 2014

  • Iadecola C (2013) The pathobiology of vascular dementia. Neurology. doi:10.1016/j.neuron.2013.10.008

    Google Scholar 

  • Inestrosa NC, Toledo EM (2008) The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease. MolNeurodegener 3:9

    PubMed Central  PubMed  Article  Google Scholar 

  • Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M (2005) Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104

    CAS  PubMed  Article  Google Scholar 

  • Kalinin S, Richardson JC, Feinstein DL (2009) A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 6:431–437

    CAS  PubMed  Article  Google Scholar 

  • Kaneyiko T, Cirrito JR, Liu CC, Shinohara M (2013) Neuronal clearance of Amyloid-β by endocytic receptor LRP1. J Neurosci 33:19276–19283. doi:10.1523/JNEUROSCI.3487-13.2013

    Article  Google Scholar 

  • Kang J, Rivest S (2012) Lipid metabolism and neuroinflammation in Alzheimer’s disease: a role for liver X receptors. Endocr Rev 33:715–746

    CAS  PubMed  Article  Google Scholar 

  • Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I (2012) Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling. J Neurosci 32:8845–8854

    CAS  PubMed  Article  Google Scholar 

  • LaClair KD, Manaye KF, Lee DL et al (2013) Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 8:18

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • LaFerla FM (2012) Preclinical success against Alzheimer’s disease with an old drug. N Engl J Med 367:570–574

    CAS  PubMed  Article  Google Scholar 

  • Landreth GE, Cramer PE, Lakner MM et al (2013) Response to comments on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi:10.1126/science.1234114

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Langbaum JB, Fleisher AS, Chen K et al (2013) Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol. doi:10.1038/nrneurol.2013.107

    PubMed Central  PubMed  Google Scholar 

  • Lee HP, Zhu X, Casadesus G et al (2010) Antioxidant approaches for the treatment of Alzheimer’s disease. Expert Rev Neurother 10:1201–1208

    PubMed  Article  Google Scholar 

  • Lesné SE, Sherman MA, Grant M et al (2013) Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136:1383–1398

    PubMed Central  PubMed  Article  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    CAS  PubMed  Article  Google Scholar 

  • Mangelsdorf DJ, Borgmeyer U, Heyman RA et al (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344

    CAS  PubMed  Article  Google Scholar 

  • Manji H, Kato T, Di Prospero NA et al (2012) Impaired mitochondrial function in psychiatric disorders. Nature Rev Neurosci 13:293–307

    CAS  Google Scholar 

  • Martín A, Pérez-Girón JV, Hernanz R, Palacios R, Briones AM, Fortuño A, Zalba G, Salaices M, Alonso MJ (2012) Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J Hypertens 30:315–326

    PubMed  Article  Google Scholar 

  • Meyer-Luehmann M, Spires-Jones TL, Prada C et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Miranda S, Opazo C, Larrondo LF et al (2000) The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol 62:633–648

    CAS  PubMed  Article  Google Scholar 

  • Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC (2005) Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 26:898–915

    CAS  PubMed  Article  Google Scholar 

  • Muzio G, Maggiora M, Oraldi M, Trombetta A, Canuto RA (2007) PPARalpha and PP2A are involved in the proapoptotic effect of conjugated linoleic acid on human hepatoma cell line SK-HEP-1. Int J Cancer 121:2395–2401

    CAS  PubMed  Article  Google Scholar 

  • Mysiorek C, Culot M, Dehouck L, Derudas B, Bordet R, Cecchelli R, Fenart L, Berezowski V (2009) Peroxisome-proliferator-activated receptor-alpha activation protects brain capillary endothelial cells from oxygen-glucose deprivation-induced hyperpermeability in the blood-brain barrier. Curr Neurovasc Res 6:181–193

    CAS  PubMed  Article  Google Scholar 

  • Neher MD, Weckbach S, Huber-Lang MS, Stahel PF (2012) New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury. PPAR Res. doi:10.1155/2012/728461

    PubMed Central  PubMed  Google Scholar 

  • O’Donnell ME, Lam TI, Tran LQ (2006) Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 26:1234–1249

    PubMed  Article  Google Scholar 

  • Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. doi:10.1038/nm.3407

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276:36863–36864

    CAS  PubMed  Article  Google Scholar 

  • Paula-Lima AC, Adasme T, SanMartín C et al (2011) Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 14:1209–1223

    CAS  PubMed  Article  Google Scholar 

  • Perl DP (2010) Neuropathology of Alzheimer's disease. Mt Sinai J Med 77:32–42

    PubMed Central  PubMed  Article  Google Scholar 

  • Philipson CW, Bassaganya-Riera J, Viladomiu M, Pedragosa M, Guerrant RL, Roche JK, Hontecillas R (2013) The role of peroxisome proliferator-activated receptor γ in immune responses to enteroaggregative Escherichia coli infection. PLoS One 8:e57812

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Polvani S, Tarocchi M, Galli A (2012) PPARγ and oxidative stress: Con(β) catenating NRF2 and FOXO. PPAR Res. doi:10.1155/2012/641087

    PubMed Central  PubMed  Google Scholar 

  • Price AR, Xu G, Siemienski ZB et al (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi:10.1126/science.1234089

    CAS  PubMed  Article  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–44

    CAS  PubMed  Article  Google Scholar 

  • Quintanilla RA, Godoy JA, Alfaro I, Cabezas D, von Bernhardi R, Bronfman M, Inestrosa NC (2013) Thiazolidinediones promote axonal growth through the activation of the JNK pathway. PLoS One 8(5):e65140. doi:10.1371/journal.pone.0065140

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Reddy OH, Beal MF (2008) Amyloid β, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Salmon DP, Bondi MW (2009) Neuropsychological assessment of dementia. Annu Rev Psychol 60:257–282

    PubMed Central  PubMed  Article  Google Scholar 

  • Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 280:41057–41068

    CAS  PubMed  Article  Google Scholar 

  • Selkoe DJ (2001) Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeuthics. Nat Med 17:1060–1065

    CAS  PubMed  Article  Google Scholar 

  • Sertizing P, Seifert M, Tilgen W, Reichrath J (2007) Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol 212:1–12

    Article  Google Scholar 

  • Shaerzadeh F, Motamedi F, Minai-Tehrani D, Khodagholi F (2013) Monitoring of neuronal loss in the hippocampus of Aβ-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis. Neuromolecular Med. doi:10.1007/s12017-013-8272-8

    PubMed  Google Scholar 

  • Sheaffer KL, Wada K, Takahashi H, Matsuhashi N, Ohnishi S, Wolfe MM, Turner JR, Nakajima A, Borkan SC, Saubermann LJ (2005) Peroxisome proliferator-activated receptor gamma inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res 65:2251–2259

    Article  Google Scholar 

  • Sheng M, Sabatini BL, Südhof TC (2012) Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 4:a005777

    PubMed Central  PubMed  Article  Google Scholar 

  • Silva DF, Selfridge JE, Lu J et al (2013) Bioenergetics flux, mitochondrial mass and mitochondrial morphology dynamics and AD and MCI cybrid cell lines. Hum Mol Genet. doi:10.1093/hmg/ddt247

    Google Scholar 

  • Silva-Alvarez C, Arrázola MS, Godoy JA, Ordenes D, Inestrosa NC (2013) Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5ª/Ca(2+) in mitocondrial dynamics. Front Cell Neurosci 7:97

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, Deane RJ, Zhong E, Parisi M, Ciszewski J, Kasper RT, Deane R (2013) Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. PNAS. doi:10.1073/pnas.1302212110

    Google Scholar 

  • Smith MA, Perry G, Richey PL et al (1996) Oxidative damage in Alzheimer’s. Nature 382:120–21

    CAS  PubMed  Article  Google Scholar 

  • Strittmatter WJ (2012) Old drug, new hope for Alzheimer’s disease. Science 335:1447. doi:10.1126/science.1220725

    CAS  PubMed  Article  Google Scholar 

  • Südhof TC (2012) The presynaptic active zone. Neuron 75:11–25

    PubMed Central  PubMed  Article  Google Scholar 

  • Südhof TC (2013) Neurotransmitter release : the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690

    PubMed  Article  Google Scholar 

  • Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–80

    CAS  PubMed  Article  Google Scholar 

  • Tesseur I, Lo AC, Roberfroid A et al (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi:10.1126/science.1233937

    CAS  PubMed  Article  Google Scholar 

  • Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 287:35222–35233

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15:272–285

    CAS  PubMed  Article  Google Scholar 

  • Veeraraghavalu K, Zhang C, Miller S et al (2013) Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924. doi:10.1126/science.1235505

    CAS  PubMed  Article  Google Scholar 

  • Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 17:27–45

    CAS  PubMed  Article  Google Scholar 

  • Yin KJ, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30:6398–6408

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    CAS  PubMed  Article  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimmer’s disease and other disorders. Nat Rev Neurosci 12:723–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zolezzi JM, Inestrosa NC (2013) Peroxisome proliferator-activated receptors and Alzheimer’s disease: hitting the blood-brain barrier. Mol Neurobiol. doi:10.1007/s12035-013-8435-5

    PubMed  Google Scholar 

  • Zolezzi JM, Silva-Alvarez C, Ordenes D et al (2013) Peroxisome proliferator-activated receptor (PPAR) γ and PPARα agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8:e64019. doi:10.1371/journal.pone.0064019

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Waldo Cerpa for helpful discussions regarding this manuscript.

This work was supported by FONDECYT N° 11130033 (to JMZ) and the Basal Center of Excellence in Science and Technology (PFB 12/2007) from CONICYT and SQM, the MIFAB Institute and Fundación Ciencia y Vida (to NCI).

Graphic work was performed by Graphique-Science (http://graphique-science.blogspot.com).

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zolezzi, J.M., Inestrosa, N.C. Brain metabolite clearance: impact on Alzheimer’s disease. Metab Brain Dis 29, 553–561 (2014). https://doi.org/10.1007/s11011-014-9527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9527-2

Keywords

  • Blood-brain barrier
  • Aβ brain balance
  • Oxidative stress
  • Neurodegeneration
  • PPARs