Metabolic Brain Disease

, Volume 29, Issue 2, pp 509–519 | Cite as

Erythrina abyssinica prevents meningoencephalitis in chronic Trypanosoma brucei brucei mouse model

  • Johnson NasimoloEmail author
  • Stephen Gitahi Kiama
  • Peter Karuri Gathumbi
  • Andrew Ndegwa Makanya
  • John Maina Kagira
Original Paper


Human African trypanosomiasis is prevalent in Sub-sahara African countries that lie between 14° North and 29° south of the equator. Sixty million people are at risk of infection. Trypanosoma brucei gambesience occurs in West and Central Africa while Trypanosoma brucei rhodesience occurs in East and Southern Africa. The neurological stage of the disease is characterized by neuroinflammation. About 10 % of patients treated with the recommended drug, melarsoprol develop post treatment reactive encephalopathy, which is fatal in 50 % of these patients, thus melarsoprol is fatal in 5 % of all treated patients. This study was aimed at establishing the potential activity of Erythrina abyssinica in reducing neuroinflammation following infection with Trypanosoma brucei brucei. Swiss white mice were divided into ten groups, two control groups and eight infected groups. Infected mice received either methanol or water extract of Erythrina abyssinica at 12.5, 25, 50 or 100 mg/kg body weight. Parasite counts were monitored in peripheral circulation from the third day post infection up to the end of the study. Brains were processed for histology, immunohistochemistry scanning and transmission electron microscopy. Following infection, trypanosomes were observed in circulation 3 days post-infection, with the parasitaemia occurring in waves. In the cerebrum, typical brain pathology of chronic trypanosomiasis was reproduced. This was exhibited as astrocytosis, perivascular cuffing and infiltration of inflammatory cells into the neuropil. However, mice treated with Erythrina abyssinica water extract exhibited significant reduction in perivascular cuffing, lymphocytic infiltration and astrocytosis in the cerebrum. The methanol extract did not have a significant difference compared to the non-treated group. This study provides evidence of anti-inflammatory properties of Erythrina abyssinica and may support its wide use as a medicinal plant by various communities in Kenya.


Erythrina abyssinica Trypanosomiasis Neuroinflammation Neurodegeneration Flavonoids Mouse model 



We thank Erna Van Wilpe and Lizette du Plessis of Electron Microscopy Unit, University of Pretoria, and Mr. Jackson Gachoka of Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, for assisting with electron microscopy work. This study was supported by RISE-AFNNET grant number 500-661-374.


  1. Adamu M, Nwosu CO, Agbede RIS (2009) Anti-Trypanosomal effects of aqueous extract of Ocimum gratissimum (Lamiaceae) leaf in rats infected with Trypanosoma brucei brucei. Afr J Tradit Complement Altern Med 6:262–267PubMedCentralPubMedGoogle Scholar
  2. Ahmad A, Alkarkhi AFM, Hena S, Siddique BM, Dur KW (2010) Optimization of Soxhlet extraction of Herba Leonuri using factorial design of experiment. Int J Chem 22:198–205Google Scholar
  3. Asuzu IU, Chineme CN (1990) Effects of Morinda lucida leaf extract on Trypanosoma brucei brucei infection in mice. J Ethnopharmacol 30:307–313PubMedCrossRefGoogle Scholar
  4. Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14:846–856PubMedGoogle Scholar
  5. Batista ML, de Morais Lima GR, de Albuquerque MC, de Almeida CL, de Athayde-Filho PF, Barbosa-Filho JM (2011) Database survey of anti-inflammatory plants in South America: a review. Int J Mol Sci 12:2692–2749PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bouteille B, Buguet A (2012) The detection and treatment of human African trypanosomiasis. Res Rep Trop Med 3:35–45CrossRefGoogle Scholar
  7. Caljon G, Van Den Abbeele J, Stijlemans B, Coosemans M, De Baetselier P, Magez S (2006) Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect Immun 74:6324–6330PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chebaibi A, Filali RF (2013) Bactericidal activity and phytochemical screening of Moroccan pomegranate (Punica granatum Linn.) peel aqueous extracts. J Med Plants Res 7:887–891Google Scholar
  9. Chirimwami B, Van Marck EAE, Gigase PLJ, Brucher JM, Mulumba P, Wery M (1988) Light microscopic neuropathology of long-term experimental Trypanosoma brucei gambiense infection in the rat. Ann Soc Belg Med Trop 68:205–218PubMedGoogle Scholar
  10. Enanga B, Burchmore RJ, Stewart ML, Barrett MP (2002) Sleeping sickness and the brain. Cell Mol Life Sci 59:845–858PubMedCrossRefGoogle Scholar
  11. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47. doi: 10.1186/1750-1326-4-47 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Grab DJ, Kennedy PG (2008) Traversal of human and animal trypanosomes across the blood–brain barrier. J Neurovirol 14:344–351PubMedCrossRefGoogle Scholar
  13. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8:65–72PubMedCrossRefGoogle Scholar
  14. Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary particles: the edge effect. J Microsc 111:219–223CrossRefGoogle Scholar
  15. Gundersen HJG (1986) Stereology of arbitrary particles: a review of unbiased number and size estimators and the presentation of some new ones (in memory of William R. Thompson). J Microsc 143:3–45PubMedCrossRefGoogle Scholar
  16. Haller L, Adams H, Merouze F, Dago A (1986) Clinical and pathological aspects of human African trypanosomiasis (T b gambiense) with particular reference to reactive arsenical encephalopathy. Am J Trop Med Hyg 35:94–99PubMedGoogle Scholar
  17. Hatti K, Diwakar L, Rao G, Kush A, Reddy G (2009) Abyssinones and related flavonoids as potential steroidogenesis modulators. Bioinformation 3:399–402PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hegde V, Dai P, Patel M, Puar M, Das P, Pai J, Bryant R, Cox P (1996) Phospholipase A2 inhibitors from an Erythrina species from Samoa. J Nat Prod 60:537–539CrossRefGoogle Scholar
  19. Herbert WJ, Lumsden WH (1976) Trypanosoma brucei: a rapid matching method for estimating the host’s parasitaemia. Exp Parasitol 40:427–432PubMedCrossRefGoogle Scholar
  20. Hunter C, Gow J, Kennedy P, Jennings F, Murray M (1991) Immunopathology of experimental African sleeping sickness: detection of cytokine mRNA in the brains of trypanosoma brucei brucei-infected mice. Infect Immun 59:4636–4640PubMedCentralPubMedGoogle Scholar
  21. Hunter CA, Jennings FW, Adams JJH, Murray M, Kennedy PGE (1992a) Subcurative chemotherapy and fatal post-treatment reactive encephalopathies in African trypanosomiasis. Lancet 339:956–958PubMedCrossRefGoogle Scholar
  22. Hunter CA, Jennings FW, Kennedy PG, Murray M (1992b) The use of azathioprine to ameliorate post-treatment encephalopathy associated with African trypanosomiasis. Neuropathol Appl Neurobiol 18:619–625PubMedCrossRefGoogle Scholar
  23. Ikede, Losos (1972a) Pathology of the disease in sheep produced experimentally by Trypanosoma brucei. Vet Pathol 9:278–289PubMedCrossRefGoogle Scholar
  24. Ikede, Losos (1972b) Pathological changes in cattle infected with Trypanosoma brucei. Vet Pathol 9:272–277PubMedCrossRefGoogle Scholar
  25. Ishiyama A, Otoguro K, Namatame M, Nishihara A, Furusawa T, Masuma R, Shiomi K, Takahashi Y, Ichimura M, Yamada H, Omura S (2008) In vitro and in vivo antitrypanosomal activitiy of two microbial metabolites, KS-505a and alazopeptin. J Antibiot (Tokyo) 61:627–632CrossRefGoogle Scholar
  26. Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M, Solano P, Garcia A, Courtin D, Laveissière C, Lingue K, Büscher P, Bucheton B (2012) Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis 6:e1691. doi: 10.1371/journal.pntd.0001691 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Jiao Y, Sun Z, Lee T, Fusco FR, Kimble TD, Meade CA, Cuthbertson S, Reiner A (1999) A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections. J Neurosci Methods 93:149–162PubMedCrossRefGoogle Scholar
  28. Kagira JM, Ngotho M, Thuita J (2007) Development of a rodent model for late stage rhodesian sleeping sickness. J Protozool Res 17:48–56Google Scholar
  29. Keita M, Bouteille B, Enanga B, Vallat JM, Dumas M (1997) Trypanosoma brucei brucei: a long-term model of human African trypanosomiasis in mice, meningo-encephalitis, astrocytosis, and neurological disorders. Exp Parasitol 85:183–192PubMedCrossRefGoogle Scholar
  30. Kennedy PGE (1999) The pathogenesis and modulation of the posttreatment reactive encephalopathy in a mouse model of Human African Trypanosomiasis. J Neuroimmunol 100:36–41PubMedCrossRefGoogle Scholar
  31. Kennedy PG, Rodgers J, Jennings FW, Murray M, Leeman SE, Burke JM (1997) A substance P antagonist, RP-67,580, ameliorates a mouse meningoencephalitic response to Trypanosoma brucei brucei. PNAS 94:4167–4170PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kennedy PG, Rodgers J, Bradley B, Hunt SP, Gettinby G, Leeman SE, de Felipe C, Murray M (2003) Clinical and neuroinflammatory responses to meningoencephalitis in substance P receptor knockout mice. Brain 126:1683–1690PubMedCrossRefGoogle Scholar
  33. Kiama SG, Bhattacharjee J, Maina JN, Weyrauch KD (1994) A scanning electron microscope study of the pecten oculi of the black kite (Milvus migrans): possible involvement of melanosomes in protecting the pecten against damage by ultraviolet light. J Anat 185:637–642PubMedCentralPubMedGoogle Scholar
  34. Kone WM, Solange KN, Dosso M (2011) Assessing Sub-saharian erythrina for efficacy: traditional uses, biological activities and phytochemistry. Pak J Biol Sci 14:560–571PubMedCrossRefGoogle Scholar
  35. Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O (2010) Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super 52:181–186Google Scholar
  36. Kratchanova M, Denev P, Ciz M, Lojek A, Mihailov A (2010) Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim Pol 57:229–234PubMedGoogle Scholar
  37. Maimone D, Guazzi GC, Annunziata P (1997) IL-6 detection in multiple sclerosis brain. J Neurol Sci 146:59–65PubMedCrossRefGoogle Scholar
  38. Makanya A, El-darawish Y, Kavoi B, Djonov V (2011) Spatial and functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens. Microsc Res Tech 74:159–169PubMedCrossRefGoogle Scholar
  39. Marston A, Hostettmann K (2006) Separation and quantification of flavonoids. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications, chapter 1. Taylor & FrancisGoogle Scholar
  40. Masocha W, Rottenberg ME, Kristensson K (2006) Minocycline impedes African trypanosome invasion of the brain in a murine model. Antimicrob Agents Chemother 50:1798–1804PubMedCentralPubMedCrossRefGoogle Scholar
  41. Masocha W, Rottenberg ME, Kristensson K (2007) Migration of African trypanosomes across the blood–brain barrier. Physiol Behav 92:110–114PubMedCrossRefGoogle Scholar
  42. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1b, IL-2, IL-4, IL-6 and transforming growth factor alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16PubMedCrossRefGoogle Scholar
  43. Mojab F, Kamalinejad M, Ghaderi N, Vanidipour HR (2003) Phytochemicals screening of some species of Iranian plants. Iran J Pharm Res 3:77–82Google Scholar
  44. Mott FW (1905) Observations on the brains of men and animals infected with various forms of trypanosomes, preliminary note. Proc R Soc Lond Phil Trans 76:235–242Google Scholar
  45. Ngotho M, Kagira J, Kariuki C, Maina N, Thuita JK, Mwangangi DM, Farah IO, Hau J (2011) Influence of trypanocidal therapy on the haematology of vervet monkeys experimentally infected with Trypanosoma brucei rhodesiense. Acta Trop 119:14–18PubMedCrossRefGoogle Scholar
  46. Ngure R, Ongeri B, Karori S, Wachira W, Maathai R, Kibugi JK, Wachira FN (2009) Anti-trypanosomal effects of Azadiracta indica (neem) extract on Trypanosoma brucei rhodesiense infected mice. East J Med 14:2–9Google Scholar
  47. Njamen D, Mbafor JT, Fomum ZT, Kamanyi A, Mbanya JC, Recio MC, Giner RM, Máñez S, Ríos JL (2004) Anti-inflammatory activities of two flavanones, sigmoidin A and sigmoidin B, from Erythrina sigmoidea. Planta Med 70:104–107PubMedCrossRefGoogle Scholar
  48. Njoroge GN, Bussman R (2006) Traditional management of ear, nose and throat (ENT) diseases in Central Kenya. J Ethnobiol Ethnomed 2:1–9CrossRefGoogle Scholar
  49. Njoroge GN, Kibuga JW (2007) Herbal medicine acceptance, sources and utilization for diarrhoea management in a cosmopolitan urban area (Thika, Kenya). Afr J Ecol 45:65–70CrossRefGoogle Scholar
  50. Oboh A, Mustapha L, Malann DY (2013) Anti-trypanosoma activity of the ethanolic leaf extract of Senna occidentalis (Fabaceae) on Trypanosoma brucei brucei infected Mice. IJBAS 2:32–37Google Scholar
  51. Pepin J, Milord F (1994) The treatment of human African trypanosomiasis. Adv Parasitol 33:1–47PubMedCrossRefGoogle Scholar
  52. Pepin J, Tetreault L, Gervais C (1985) The use of oral corticosteroids in treatment of human African trypanosomiasis; a retrospective survey in Nioki, Zaire. Ann Soc Belg Med Trop 65:17–29PubMedGoogle Scholar
  53. Pillay C, Jager A, Mulholland D, Staden J (2001) Cyclooxygenase inhibiting and anti-bacterial activities of South African Erythrina species. J Ethnopharmacol 74:231–237PubMedCrossRefGoogle Scholar
  54. Poltera A, Hoch MA, Rudin W, Lambert P (1980) Trypanosoma brucei brucei: a model for cerebral trypanosomiasis in mice-an immunological, histological and electron microscopic study. Clin Exp Immunol 40:496–507PubMedCentralPubMedGoogle Scholar
  55. Priotto G, Kasparian S, Mutombo W, Ngouama D, Ghorashian S, Arnold U, Ghabri S, Baudin E, Buard V, Kazadi-Kyanza S, Ilunga M, Mutangala W, Pohlig G, Schmid C, Karunakara U, Torreele E, Kande V (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374:56–64PubMedCrossRefGoogle Scholar
  56. Quan N, Mhlanga J, Whiteside M, McCoy A, Kristensson K, Herkenham M (1999) Chronic overexpression of proinflammatory cytokines and histopathology in the brains of rats infected with Trypanosoma brucei. J Comp Neurol 414:114–130PubMedCrossRefGoogle Scholar
  57. Rodgers J, Stone TW, Barrett MP, Bradley B, Kennedy PG (2009) Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis. Brain 132:1259–1267PubMedCentralPubMedCrossRefGoogle Scholar
  58. Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 12:221. doi: 10.1186/1472-6882-12-221 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Saidu K, Onah J, Orisadipe A, Olusola A, Wambebe C, Gamaniel K (2000) Antiplasmodial, analgesic, and anti-inflammatory activities of the aqueous extract of the stem bark of Erythrina senegalensis. J Ethnopharmacol. 71:275-80Google Scholar
  60. Schultzberg M, Ambatsis M, Samuelsson EB, Kristensson K, van Meirvenne N (1988) Spread of Trypanosoma brucei to the nervous system: early attack on circumventricular organs and sensory ganglia. J Neurosci Res 21:56–61PubMedCrossRefGoogle Scholar
  61. Spencer JP, Vafeiadou K, Williams RJ, Vauzour D (2012) Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 33:83–97PubMedCrossRefGoogle Scholar
  62. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the dissector. J Microsc 134:127–136PubMedCrossRefGoogle Scholar
  63. Steverding D (2008) The history of African trypanosomiasis. Parasit Vectors 1:3. doi: 10.1186/1756-3305-1-3 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Stich A, Abel PM, Krishna S (2002) Human African trypanosomiasis. BMJ 27(325):203–206CrossRefGoogle Scholar
  65. Talla E, Njamen D, Mbafor JT, Fomum ZT, Kamanyi A, Mbanya JC, Giner RM, Recio MC, Máñez S, Ríos JL (2003) Warangalone, the isoflavonoid anti-inflammatory principle of Erythrina addisoniae stem bark. J Nat Prod 66:891–893PubMedCrossRefGoogle Scholar
  66. Tyler KM, Higgs PG, Matthews KR, Gull K (2001) Limitation of Trypanosoma brucei parasitaemia results from density-dependent parasite differentiation and parasite killing by the host immune response. Proc Biol Sci 268:2235–2243PubMedCentralPubMedCrossRefGoogle Scholar
  67. Vauzour D, Minihane AM (2012) Neuroinflammation and the APOε genotype: implications for Alzheimer’s disease and modulation by dietary flavonoids and n-3 polyunsaturated fatty acids. Nutr Aging 1:41–53Google Scholar
  68. Wagate CG, Mbaria JM, Gakuya DW, Nanyingi MO, Kareru PG, Njuguna A, Gitahi N, Macharia JK, Njonge FK (2009) Screening of some Kenyan medicinal plants for antibacterial activity. Phytother Res 24:150–153CrossRefGoogle Scholar
  69. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916PubMedCrossRefGoogle Scholar
  70. Yenesew A, Hannington T, Bernard TK, Martin NM, Peter MGI, Matthias H, Martin GP (2009) 8-methoxyneorautenol and radical scavenging flavonoids from Erythrina abyssinica. Bull Chem Soc Ethiop 23:205–210Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Johnson Nasimolo
    • 1
    Email author
  • Stephen Gitahi Kiama
    • 1
  • Peter Karuri Gathumbi
    • 2
  • Andrew Ndegwa Makanya
    • 1
  • John Maina Kagira
    • 3
  1. 1.Department of Veterinary Anatomy and PhysiologyUniversity of NairobiNairobiKenya
  2. 2.Department of Veterinary Pathology, Microbiology and ParasitologyUniversity of NairobiNairobiKenya
  3. 3.Department of Animal Health and ProductionJomo Kenyatta University of Agriculture and TechnologyNairobiKenya

Personalised recommendations