Skip to main content

Advertisement

Log in

Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anand A, Verhoeff P, Seneca N et al (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157:1108–1114

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Cassini C, Rosa AR et al (2007) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529

    Article  PubMed  Google Scholar 

  • Andreazza AC, Wang JF, Salmasi F et al (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem. doi:10.1111/jnc.12316

    PubMed  Google Scholar 

  • Balanzá-Martínez V, Fries GR, Colpo GD et al (2011) Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 11:1029–1047

    Article  PubMed  Google Scholar 

  • Barros DM, Izquierdo LA, Medina JH, Izquierdo I (2002) Bupropion and sertraline enhance retrieval of recent and remote long-term memory in rats. Behav Pharmacol 13:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bas O, Songur A, Sahin O et al (2007) The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int 503:548–554

    Article  Google Scholar 

  • Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50:S400–S405

    Article  PubMed  Google Scholar 

  • Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–486

    Article  CAS  PubMed  Google Scholar 

  • Berger GE, Wood SJ, Wellard RM et al (2008) Ethyl-eicosapentaenoic acid in first-episode psychosis. A 1H-MRS study. Neuropsychopharmacology 33:2467–2473

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Kapczinski F, Andreazza AC et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817

    Article  CAS  PubMed  Google Scholar 

  • Bielau H, Brisch R, Bernard-Mittelstaedt J et al (2012) Immunohistochemical evidence for impaired nitric oxide signaling of the locus coeruleus in bipolar disorder. Brain Res 1459:91–99

    Article  CAS  PubMed  Google Scholar 

  • Bird RP, Draper AH (1984) Comparative studies on different methods of malondyhaldehyde determination. Methods Enzymol 105:299–05

    Article  CAS  PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cody JT, Valtier S, Stillman S (1999) Amphetamine and fenproporex levels following multidose administration of fenproporex. J Ana Toxicol 23:187–194

    Article  CAS  Google Scholar 

  • Coutts RT, Nazarali AJ, Baker GB, Pasutto FM (1986) Metabolism and disposition of N-(2-cyanoethyl) amphetamine (fenproporex) andamphetamine: study in the rat brain. Can J Physiol Pharmacol 64:724–728

    Article  CAS  PubMed  Google Scholar 

  • Du Bois TM, Deng C, Bell W, Huang XF (2006) Fatty acids differentially affect serotonin receptor and transporter binding in the rat brain. Neurosc 139:1397–03

    Article  Google Scholar 

  • El-Ansary AK, Al-Daihan SK, El-Gezeery AR (2011) On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health Dis 10:142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Mallakh RS, El-Masri MA, Huff MO et al (2003) Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord 5:362–365

    Article  CAS  PubMed  Google Scholar 

  • Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations. Journal of Pharmacological Methods 25:111–122

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Martins MR, Petronilho FC et al (2006a) Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord 8:275–280

    Article  CAS  Google Scholar 

  • Frey BN, Valvassori SS, Réus GZ et al (2006b) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    Google Scholar 

  • Frey BN, Valvassori SS, Réus GZ et al (2006c) Changes in antioxidant defense enzymes after d-amphetamine exposure: implications as an animal model of mania. Neurochem Res 31:699–703

    Article  CAS  Google Scholar 

  • Frey BN, Andreazza AC, Kunz M et al (2007) Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 31:283–295

    Article  CAS  PubMed  Google Scholar 

  • Gama CS, Canever L, Panizzutti B et al (2012) Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia. Schizophr Res 141:162–167

    Article  PubMed  Google Scholar 

  • Gawryluk JW, Wang JF, Andreazza AC et al (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130

    Article  CAS  PubMed  Google Scholar 

  • Gigante AD, Andreazza AC, Lafer B et al (2011) Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett 505:47–51

    Article  CAS  PubMed  Google Scholar 

  • Gleissman H, Johnsen JI, Kogner P (2010) Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res 316:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Gonda X, Pompili M, Serafini G et al (2012) Suicidal behavior in bipolar disorder: Epidemiology, characteristics and major risk factors. J Affect Disord 143:16–26

    Article  PubMed  Google Scholar 

  • Goodwin FK, Jamison KR (1990) Manic-Depressive Illness: Second Edition New York. Oxford University Press, NY

    Google Scholar 

  • Guest J, Garg M, Bilgin A, Grant R (2013) Relationship between central and peripheral fatty acids in humans. Lipids Health Dis 12:79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haag M (2003) Essential fatty acids and the brain. Can J Psychiatry 48:195–203

    PubMed  Google Scholar 

  • Jana S, Sinha M, Chanda D et al (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1812:663–673

    Article  CAS  PubMed  Google Scholar 

  • Kapczinski F, Dal-Pizzol F, Teixeira AL et al (2011) Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 45:156–161

    Article  PubMed  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  CAS  PubMed  Google Scholar 

  • Katsumata T, Katayama Y, Obo R et al (1999) Delayed administration of ethyl eicosapentate improves local cerebral blood flow and metabolism without affecting infarct volumes in the rat focal ischemic model. Eur J Pharmacol 372:167–174

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Yoshimura R, Fukuo Y et al (2013) The serotonin 1A receptor gene confer susceptibility to mood disorders: results from an extended meta-analysis of patients with major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 263:105–118

    Article  PubMed  Google Scholar 

  • Kitajka K, Sinclair AJ, Weisinger RS et al (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101:10931–10936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konradi C, Eaton M, Macdonald ML et al (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  • Kraemer T, Theis GA, Weber AA, Maurer HH (2000) Studies on the metabolism and toxicological detection of the amphetamine-like anorectic fenproporex in human urine by gas chromatography–mass spectrometry and fluorescence polarization immunoassay. J Chromatogr B 738:107–118

    Article  CAS  Google Scholar 

  • Kuloglu M, Ustundag B, Atmaca M et al (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem and Function 20:171–175

    Article  CAS  Google Scholar 

  • Kunz M, Gama CS, Andreazza AC et al (2008) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32:1677–1681

    Article  CAS  PubMed  Google Scholar 

  • Lai YL, Rodarte JR, Hyatt RE (1977) Effect of body position on lung emptying in recumbent anesthetized dogs. J Appl Physiol 43:983–987

    CAS  PubMed  Google Scholar 

  • Lavialle M, Champeil-Potokar G, Alessandri JM et al (2008) An (n-3) polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity, melatonin rhythm, and striatal dopamine in Syrian hamsters. J Nutr 138:1719–1724

    CAS  PubMed  Google Scholar 

  • Leclerc E, Mansur RB, Brietzke E (2013) Determinants of adherence to treatment in bipolar disorder: A comprehensive review. J Affect Disord 149:247–252

    Article  PubMed  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Logan AC (2003) Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern Med Rev 8:410–425

    PubMed  Google Scholar 

  • Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspective for the development of animals models of bipolar disorders. Prog NeuroPsycopharmacol Biol Psychiatry 28:209–224

    Article  Google Scholar 

  • Mattei R, Carlini EA (1996) A comparative study of the anorectic and behavioral effects of fenproporex on male and female rats. Braz J Med Biol Res 29:1025–1030

    CAS  PubMed  Google Scholar 

  • Mossaheb N, Schäfer MR, Schlögelhofer M et al (2013) Effect of omega-3 fatty acids for indicated prevention of young patients at risk for psychosis: When do they begin to be effective? Schizophr Res. doi:10.1016/j.schres.2013.05.027

    Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noaghiul S, Hibbeln JR (2003) Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry 160:2222–2227

    Article  PubMed  Google Scholar 

  • Ozyurt B, Sarsilmaz M, Akpolat N et al (2007) The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50:196–202

    Article  CAS  PubMed  Google Scholar 

  • Pinsonneault JK, Han DD, Burdick KE et al (2011) Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology 36:1644–1655

    Article  CAS  PubMed  Google Scholar 

  • Piomelli D (1994) Eicosanoids in synaptic transmission. Crit Rev Neurbiol 8:65–83

    CAS  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  CAS  PubMed  Google Scholar 

  • Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33:2551–2565

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G (2002) Cell pathology in bipolar disorder. Bipolar Disord :4105-16

  • Rao JS, Lee HJ, Rapoport SI, Bazinet RP (2008) Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry 13:585–596

    Article  CAS  PubMed  Google Scholar 

  • Rezin GT, Furlanetto CB, Scaini G, et al. (2013) Fenproporex increases locomotor activity, alters energy metabolism and mood stabilizers reverse these changes: a proposal for a new animal model of mania. Molecular Neurobiology, in press.

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    CAS  PubMed  Google Scholar 

  • Sagduyu K, Dokucu ME, Eddy BA et al (2005) Omega-3 fatty acids decreased irritability of patients with bipolar disorder in an add-on, open label study. Nutr J 4:1–6

    Article  Google Scholar 

  • Salem N Jr, Litman B, Kim HY, Gawrish K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    Article  CAS  PubMed  Google Scholar 

  • Salomone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Ver 21:341–359

    Article  Google Scholar 

  • Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 3:279–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Severino G, Squassina A, Costa M et al (2013) Pharmacogenomics of bipolar disorder. Pharmacogen 14:655–674

    Article  CAS  Google Scholar 

  • Siegel G, Ermilov E (2012) Omega-3 fatty acids: benefits for cardio-cerebro-vascular diseases. Atheroscler 225:291–295

    Article  CAS  Google Scholar 

  • Sims DE (1991) Recent advances in pericyte biology–implications for health and disease. Can J Cardiol 7:431–443

    CAS  PubMed  Google Scholar 

  • Sinclair AJ, Begg D, Mathai M, Weisinger RS (2007) Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr 16:391–397

    CAS  PubMed  Google Scholar 

  • Sogaard R, Werge TM, Bertelsen C et al (2006) GABA(A) receptor function is regulated by lipid bilayer elasticity. Biochemistry 45:13118–13129

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Hertz L, Schousboe A (1998) Mitochondrial heterogeneity in the brain at the cellular level. J Cereb Blood Flow Metab 18:231–237

    Article  CAS  PubMed  Google Scholar 

  • Soreca I, Frank E, Kupfer DJ (2009) The phenomenology of bipolar disorder: what drives the high rate of medical burden and determines long-term prognosis? Depress Anxiety 26:73–82

    Article  PubMed Central  PubMed  Google Scholar 

  • Sosa V, Molin’e T, Somoza T et al (2012) Oxidative stress and cancer: an overview. Ageing Research Review 12:376–390

    Article  Google Scholar 

  • Steckert AV, Valvassori SS, Moretti M et al (2010) Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 35:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Stoll AL, Severus WE, Freeman MP et al (1999) Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 56:407–412

    Article  CAS  PubMed  Google Scholar 

  • Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated Damphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Molecular psychiatry 11:663–679

    Article  CAS  Google Scholar 

  • Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the antiinflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289

    Article  PubMed  Google Scholar 

  • Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11:523–529

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21:1457–1467

    Article  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neurosci 155:751–759

    Article  CAS  Google Scholar 

  • Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    Article  CAS  PubMed  Google Scholar 

  • Young G, Conquer J (2005) Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 45:1–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) and Universidade do Extremo Sul Catarinense (UNESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Model, C.S., Gomes, L.M., Scaini, G. et al. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration. Metab Brain Dis 29, 185–192 (2014). https://doi.org/10.1007/s11011-013-9473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9473-4

Keywords

Navigation