Skip to main content

Advertisement

Log in

Pyrithiamine-induced thiamine deficiency alters proliferation and neurogenesis in both neurogenic and vulnerable areas of the rat brain

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Thiamine deficiency (TD) leads to Wernicke’s encephalopathy (WE), in which focal histological lesions occur in periventricular areas of the brain. Recently, impaired neurogenesis has been reported in the hippocampus during the dietary form of TD, and in pyrithiamine-induced TD (PTD), a well-characterized model of WE. To further characterize the consequences of PTD on neural stem/progenitor cell (NSPC) activity, we have examined the effect of this treatment in the rat on both the subventricular zone (SVZ) of the rostral lateral ventricle and subgranular layer (SGL) of the hippocampus, and in the thalamus and inferior colliculus, two vulnerable brain regions in this disorder. In both the SVZ and SGL, PTD led to a decrease in the numbers of bromodeoxyuridine-stained cells, indicating that proliferation of NSPCs destined for neurogenesis in these areas was reduced. Doublecortin (DCX) immunostaining in the SGL was decreased, indicating a reduction in neuroblast formation, consistent with impaired NSPC activity. DCX labeling was not apparent in focal areas of vulnerability. In the thalamus, proliferation of cells was absent while in the inferior colliculus, numerous actively dividing cells were apparent, indicative of a differential response between these two brain regions. Exposure of cultured neurospheres to PTD resulted in decreased proliferation of NSPCs, consistent with our in vivo findings. Together, these results indicate that PTD considerably affects cell proliferation and neurogenesis activity in both neurogenic areas and parts of the brain known to display structural and functional vulnerability, confirming and extending recent findings on the effects of TD on neurogenesis. Future use of NSPCs in vitro may allow a closer and more detailed examination of the mechanism(s) underlying inhibition of these cells during TD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Nutritional information of the rodent diet: Crude protein: 18.9 %; Crude oil: 6.0 %; Carbohydrate: 57.33 %; Sugar: 4.93 %; Starch: 41.24 %; Vitamin A: 15.4 IU/g; Vitamin E: 101 mg/kg; Vitamin K (menadione): 51 mg/kg; Vitamin B1: <0.1 mg/kg; Vitamin B2: 14.9 mg/kg; Niacin: 41.2 mg/kg; Vitamin: B6 18.5 mg/kg; Pantothenic acid: 33 mg/kg; Biotin: 0.3 mg/kg; Folate: 3.34 mg/kg; Vitamin D3: 1.5 IU/g; Vitamin B12: 0.08 mg/kg.

References

  • Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    Article  CAS  PubMed  Google Scholar 

  • Barkho B, Zhao X (2010) Neural stem cell migration: Roles of chemokines and proteases. In: Jin K (ed) Adult neurogenesis and central nervous system diseases. Research Signpost, Kerala, pp 65–90

    Google Scholar 

  • Butterworth RF (1986) Cerebral thiamine-dependent enzyme changes in experimental Wernicke’s encephalopathy. Metab Brain Dis 1:165–175

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Giguère JF, Besnard AM (1986) Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. alpha-Ketoglutarate dehydrogenase. Neurochem Res 11:567–577

    Article  CAS  PubMed  Google Scholar 

  • Corotto FS, Henegar JA, Maruniak JA (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Ann Rev Neurosci 18:159–192

    Article  CAS  PubMed  Google Scholar 

  • Gaitonde MK, Fayein NA, Johnson AL (1975) Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine. J Neurochem 24:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Gubler CJ, Adams BL, Hammond B, Yuan EC, Guo SM, Bennion M (1974) Effect of thiamine deprivation and thiamine antagonists on the level of gamma-aminobutyric acid and on 2-oxoglutarate metabolism in rat brain. J Neurochem 22:831–836

    Article  CAS  PubMed  Google Scholar 

  • Hallbergson AF, Gnatenco C, Peterson DA (2003) Neurogenesis and brain injury: managing a renewable resource for repair. J Clin Invest 112:1128–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harper C (1983) The incidence of Wernicke’s encephalopathy in Australia - a neuropathological study of 131 cases. J Neurol Neurosurg Psychiatry 46:593–598

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Watabe H, Kudomi N, Kim KM, Enmi J, Hayashida K, Iida H (2003) A theoretical model of oxygen delivery and metabolism for physiologic interpretation of quantitative cerebral blood flow and metabolic rate of oxygen. J Cereb Blood Flow Metab 23:1314–1323

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS (2009) Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int 55:129–135

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Butterworth RF (2009) Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol 44:141–147

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Wang C (2005) Downregulation of complexin I and complexin II in the medial thalamus is blocked by N-acetylcysteine in experimental Wernicke’s encephalopathy. J Neurosci Res 79:200–207

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Rama Rao KV, Danbolt DV, Pow DV, Butterworth RF (2001) Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy. J Neurochem 78:560–568

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Pannunzio P, Rama Rao KV, Pow DV, Rambaldi A (2003) Thiamine deficiency results in downregulation of the GLAST glutamate transporter in cultured astrocytes. Glia 43:175–184

    Article  PubMed  Google Scholar 

  • Imai N, Kubota M, Saitou M, Yagi N, Serizawa M, Kobari M (2012) Increase of serum vascular endothelial growth factors in wet beriberi: two case reports. Intern Med 51:929–932

    Article  PubMed  Google Scholar 

  • Johnson LR, Gubler CJ (1968) Studies on the physiological functions of thiamine. III. The phosphorylation of thiamine in brain. Biochim Biophys Acta 156:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kim JS (1996) Cytokines and adhesion molecules in stroke and related diseases. J Neurol Sci 137:69–78

    Article  CAS  PubMed  Google Scholar 

  • Langlais PJ, Savage LM (1995) Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav Brain Res 68:75–89

    Article  CAS  PubMed  Google Scholar 

  • Langlais PJ, Mandel RJ, Mair RG (1992) Diencephalic lesions, learning impairments, and intact retrograde memory following acute thiamine deficiency in the rat. Behav Brain Res 48:177–185

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26:3491–3495

    Article  CAS  PubMed  Google Scholar 

  • Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965–976

    Article  CAS  PubMed  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa E, Aimi Y, Yasuhara O, Tooyama I, Shimada M, McGeer PL, Kimura H (2000) Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia 41:10–18

    Article  CAS  PubMed  Google Scholar 

  • Naylor M, Bowen KK, Sailor KA, Dempsey RJ, Vemuganti R (2005) Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int 47:565–572

    Article  CAS  PubMed  Google Scholar 

  • Ohira K (2011) Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci 68:1645–1656

    Article  CAS  PubMed  Google Scholar 

  • Otto VI, Gloor SM, Frentzel S, Gilli U, Ammann E, Hein AE, Folkers G, Trentz O, Kossmann T, Morganti-Kossmann MC (2002) The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by src tyrosine kinases and p42/44 mitogen-activated protein kinase. J Neurochem 80:824–834

    Article  CAS  PubMed  Google Scholar 

  • Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 99:13211–13216

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Harde V, Petersen W, Goldring MB, Tillmann B, Mentlein R (2004) Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol 202:367–374

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Quastel JH (1965) Transport and metabolism of thiamine in rat brain cortex in vitro. Biochem J 94:790–800

    CAS  PubMed  Google Scholar 

  • Tellez I, Terry RD (1968) Fine structure of the early changes in the vestibular nuclei of the thiamine-deficient rat. Am J Pathol 52:777–794

    CAS  PubMed  Google Scholar 

  • Todd KG, Butterworth RF (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25:190–198

    Article  CAS  PubMed  Google Scholar 

  • Torvik A (1985) Two types of brain lesions in Wernicke’s encephalopathy. Neuropathol Appl Neurobiol 11:179–190

    Article  CAS  PubMed  Google Scholar 

  • Troncoso JC, Johnston MV, Hess KM, Griffin JW, Price DL (1981) Model of Wernicke’s encephalopathy. Arch Neurol 38:350–354

    Article  CAS  PubMed  Google Scholar 

  • Vemuganti R, Kalluri H, Yi J-H, Bowen KK, Hazell AS (2006) Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism, and structural damage in thiamine deficiency. Eur J Neurosci 23:1172–1188

    Article  PubMed  Google Scholar 

  • Vetreno RP, Klintsova A, Savage LM (2011) Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome. Brain Res 1391:132–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Victor M, Adams RD, Collins GH (1989) The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition. F.A. Davies, Philadelphia

    Google Scholar 

  • Vortmeyer AO, Colmant HJ (1988) Differentiation between brain lesions in experimental thiamine deficiency. Virchows Arch A Pathol Anat Histopathol 414:61–67

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Hazell AS (2010) Microglial activation is a major contributor to neurologic dysfunction in thiamine deficiency. Biochem Biophys Res Commun 402:123–128

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, Wang Y, Chopp M (2006) Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26:5996–6003

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao N, Zhong C, Wang Y, Zhao Y, Gong N, Zhou G, Xu T, Hong Z (2008) Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage. Neurobiol Dis 29:176–185

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Hazell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazell, A.S., Wang, D., Oanea, R. et al. Pyrithiamine-induced thiamine deficiency alters proliferation and neurogenesis in both neurogenic and vulnerable areas of the rat brain. Metab Brain Dis 29, 145–152 (2014). https://doi.org/10.1007/s11011-013-9436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9436-9

Keywords

Navigation