Skip to main content

Advertisement

Log in

Synthetic nucleic acids delivered by exosomes: a potential therapeutic for generelated metabolic brain diseases

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Many brain diseases, including Alzheimer’s disease, are associated with genetic abnormalities. The search for more effective therapeutic approaches involving nucleic acids like interfering RNA, antisense oligonucleotides and mRNA has drawn much attention in the development of alternatives to virus-based gene therapy. Potentially, nucleic acids could not only specifically down-regulate and degrade misfolded proteins, but also relieve protein deficiencies by directing the translation of functional proteins. However, clinical applications have been stalled by the lack of proper delivery systems. Exosomes are nano-scale extracellular vesicles secreted by nearly all somatic cells. Recent work has revealed that exosomes play special roles in intercellular communication via the horizontal transfer of various RNAs among cells. Recently, the use of exosomes for the delivery of therapeutic nucleic acids to targeted cells has been demonstrated to be a practical approach. Here, we briefly review the general properties of exosomes and introduce three therapeutic nucleic acids. Based upon comparison with other delivery methods, exosomes are proposed as an ideal nucleic acid delivery system for metabolic brain disease therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248

    CAS  PubMed  Google Scholar 

  • Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS et al (2010) Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp Hematol 38(3):233–245

    CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    CAS  PubMed  Google Scholar 

  • Ambros V (2008) The evolution of our thinking about microRNAs. Nat Med 14:1036–1040

    CAS  PubMed  Google Scholar 

  • Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312

    CAS  PubMed  Google Scholar 

  • Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A (2012) Syndecan-syntenin-ALIX-regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685

    CAS  PubMed  Google Scholar 

  • Batagov AO, Kuznetsov VA, Kurochkin IL (2011) Identification of nucleotide patterns enriched in secreted RNAsas putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genom 12(Suppl 3):S18

    CAS  Google Scholar 

  • Boudreau RL, Rodríguez-Lebrón E, Davidson BL (2011) RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 20(R1):R21–R27

    CAS  PubMed  Google Scholar 

  • Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218(2):235–246

    PubMed  Google Scholar 

  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal like vesicles are present in human blood plasma. Int Immunol 17:879–887

    CAS  PubMed  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56(9):484–546

    PubMed  Google Scholar 

  • Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN et al (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38:215–224

    CAS  PubMed  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    CAS  PubMed  Google Scholar 

  • Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5(7):e11803

    PubMed  Google Scholar 

  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    CAS  PubMed  Google Scholar 

  • Corti O, Lesage S, Brice A (2011) What genetics tells US about the causes and mechanisms of Parkinson’s Disease. Physiol Rev 91:1161–1218

    CAS  PubMed  Google Scholar 

  • Dai S, Wei D, Wu Z et al (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16:782–790

    CAS  PubMed  Google Scholar 

  • Deleavey GF, Damha MJ (2012) Designing chemically modified oligonucleic acid for targeted gene silencing. Chem Biol 19(8):937–954

    CAS  PubMed  Google Scholar 

  • Devi L, Ohno M (2012) Mitochondrial dysfunction and accumulation of the β-secretase cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol Dis 45(1):417–424

    CAS  PubMed  Google Scholar 

  • Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch - Eur J Physiol 464:111–121

    CAS  Google Scholar 

  • Eketjäll S, Janson J, Jeppsson F, Svanhagen A, Kolmodin K et al (2013) AZ-4217: a high potency bace inhibitor displaying acute central efficacy in different in vivo models and reduced amyloid deposition in Tg2576 mice. J Neurosci 33(24):10075–10084

    PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  PubMed  Google Scholar 

  • Escudier B, Dorval T, Chaput N et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst Phase I clinical trial. J Transl Med 3:10

    PubMed  Google Scholar 

  • Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ et al (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687

    CAS  PubMed  Google Scholar 

  • Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor MicroRNAs. Stem Cells 30(9):1985–1998

    CAS  PubMed  Google Scholar 

  • Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D (2008) AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 16:947–956

    CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed  Google Scholar 

  • Galindo MF et al (2010) Mitochondrial biology in Alzheimer’s disease pathogenesis. J Neurochem 14:933–945

    Google Scholar 

  • Gass J, Prudencio M, Stetler C, Petrucelli L (2012) Progranulin: an emerging target for FTLD therapies. Brainresearch 1462:118–128

    CAS  Google Scholar 

  • Ge R, Tan E, Sharghi-Namini S, Asada HH (2012) Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers? Cancer Microenviron 5(3):323–332

    CAS  PubMed  Google Scholar 

  • Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20:363–379

    CAS  PubMed  Google Scholar 

  • Gravenfors Y, Viklund J, Blid J, Ginman T, Karlström S et al (2012) New aminoimidazoles as β-secretase (BACE-1) inhibitors showing amyloid-β (Aβ) lowering in brain. J Med Chem 55(21):9297–9311

    CAS  PubMed  Google Scholar 

  • Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14(10):1036–1045

    CAS  PubMed  Google Scholar 

  • Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X et al (2012) Lactation-related MicroRNA expression profiles of porcine breast milk exosomes. PLOS ONE 7:e43691

    CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Hauer J, Lim A et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364

    CAS  PubMed  Google Scholar 

  • Harper SQ, Staber PD, He X, Eliason SL, Martins IH et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102(16):5820–5825

    CAS  PubMed  Google Scholar 

  • Heng D, Guo L, Yan S, Sosunov AA et al (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. PNAS 107(43):18670–18675

    Google Scholar 

  • Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14(6B):1605–1618

    CAS  PubMed  Google Scholar 

  • Hickey P, Stacy M (2013) AAV2-neurturin (CERE-120) for Parkinson’s disease. Expert Opin Biol Ther 13(1):137–145

    CAS  PubMed  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S et al (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134(Pt 6):1790–1807

    PubMed  Google Scholar 

  • Houlden H, Singleton AB (2012) The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 124:325–338

    CAS  PubMed  Google Scholar 

  • Hu J, Liu J, Corey DR (2010) Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem Biol 17:1183–1188

    CAS  PubMed  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. The EMBO J 30:3481–3500

    CAS  Google Scholar 

  • Kaiser J (2003) Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science 299(5606):495

    CAS  PubMed  Google Scholar 

  • Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20(3):513–524

    CAS  PubMed  Google Scholar 

  • Katakowski M, Buller B, Zheng X, Lu Y, Rogers T et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204

    CAS  PubMed  Google Scholar 

  • Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    CAS  PubMed  Google Scholar 

  • Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11(2):839–849

    CAS  PubMed  Google Scholar 

  • Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleic acid. Nat Rev Drug Discov 11(2):125–140

    CAS  PubMed  Google Scholar 

  • Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29(2):154–157

    CAS  PubMed  Google Scholar 

  • Kuhn AN, Beiβert T, Simon P, Vallazza B, Buck J, Davies BP et al (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12(5):347–361

    CAS  PubMed  Google Scholar 

  • Kumar P, Wu H, McBride JL, Jung KE, Kim MH et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    CAS  PubMed  Google Scholar 

  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222

    CAS  PubMed  Google Scholar 

  • Lai RC, Yeo RW, Tan KH, Lim SK (2013) Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 8(2):197–209

    CAS  PubMed  Google Scholar 

  • Laird FM, Cai H, Savonenko AV, Farah MH, He K et al (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25(50):11693–11709

    CAS  PubMed  Google Scholar 

  • Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226

    CAS  PubMed  Google Scholar 

  • Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611

    CAS  PubMed  Google Scholar 

  • Liu R, Wang S, Liu J (2013) Exosomes: the novel vehicles for intercellular communication. Progr Biochem Biophys 40(8):1–9

    Google Scholar 

  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012a) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40(D1):D1241–D1244

    CAS  PubMed  Google Scholar 

  • Mathivanan S, Fahner CJ et al (2012b) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40(D1):D1241–D1244

    CAS  PubMed  Google Scholar 

  • Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 46:37–52

    Google Scholar 

  • Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21(1):101–108

    CAS  PubMed  Google Scholar 

  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766

    CAS  PubMed  Google Scholar 

  • Murakami K, Murata N, Noda Y, Tahara S, Kaneko T et al (2011) SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 286(52):44557–44568

    CAS  PubMed  Google Scholar 

  • Nolte-‘t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ‘t Hoen PA (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40(18):9272–9285

    PubMed  Google Scholar 

  • Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M et al (2007) BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis 26:134–145

    CAS  PubMed  Google Scholar 

  • Ohno S, Takanashi M, Sudo K, Ueda S et al (2013) Systemically injected exosomes targeted to egfr deliver antitumor MicroRNA to breast cancer cells. Mol Ther 21(1):185–191

    CAS  PubMed  Google Scholar 

  • Olson SD, Kambal A, Pollock K, Mitchell GM, Stewart H, Kalomoiris S et al (2012) Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington’s disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci 49:271–281

    CAS  PubMed  Google Scholar 

  • Pan Q, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE et al (2012) Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 61:1330–1339

    CAS  PubMed  Google Scholar 

  • Parolini I, Federici C, Raggi C, Lugini L, Palleschi S et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222

    CAS  PubMed  Google Scholar 

  • Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–889

    CAS  PubMed  Google Scholar 

  • Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A et al (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288(17):11649–11661

    CAS  PubMed  Google Scholar 

  • Quesenberry PJ, Aliotta JM (2010) Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 62(12):1141–1148

    CAS  PubMed  Google Scholar 

  • Rana S, Zöller M (2011) Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans 39(2):559–562

    CAS  PubMed  Google Scholar 

  • Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856

    CAS  PubMed  Google Scholar 

  • Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81:1171–1182

    CAS  PubMed  Google Scholar 

  • Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, Schor N (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7(9):e44092

    CAS  PubMed  Google Scholar 

  • Ren X, Zhang T, Gong X, Hu G, Ding W, Wang X (2013) AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp Neurol 248C:148–156

    Google Scholar 

  • Ripa RS, Haack-Sørensen M, Wang Y, Jørgensen E, Mortensen S et al (2007) Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation 116(11 Suppl):I24–I30

    CAS  PubMed  Google Scholar 

  • Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19:89–102

    CAS  PubMed  Google Scholar 

  • Rodríguez-Lebrón E, Gouvion CM, Moore SA, Davidson BL, Paulson HL (2009) Allele-specific RNAi mitigates phenotypic progression in a transgenic model of Alzheimer’s disease. Mol Ther 17(9):1563–1573

    PubMed  Google Scholar 

  • Sahu R, Kaushik SC (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139

    CAS  PubMed  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    CAS  PubMed  Google Scholar 

  • Singer O, Marr RA, Rockenstein E, Crews L (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8:1343–1349

    CAS  PubMed  Google Scholar 

  • Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L et al (2008) Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    CAS  PubMed  Google Scholar 

  • Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16(2):198–204

    CAS  PubMed  Google Scholar 

  • Stuffers S, Sem WC, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937

    CAS  PubMed  Google Scholar 

  • Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89:205–212

    CAS  PubMed  Google Scholar 

  • Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M et al (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51:2105–2120

    CAS  PubMed  Google Scholar 

  • Szabo TG, Misjak P, Aradi B et al. (2012) Comparative meta-analysis of proteomic data on extracellular vesicle subsets. F1000 Posters 3: 471

    Google Scholar 

  • Tan J, Wu W, Xu X, Liao L, Zheng F et al (2012) Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307(11):1169–1177

    CAS  PubMed  Google Scholar 

  • Tan A, Rajadas J, Seifalian AM (2013) Exosomes as nano-theranostic platforms for gene therapy. Adv Drug Deliv Rev 65(3):357–67

    CAS  PubMed  Google Scholar 

  • Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    PubMed  Google Scholar 

  • Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. doi:10.1002/0471143030.cb0322s30

  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE et al (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137

    CAS  PubMed  Google Scholar 

  • Turner JJ, Jones SW, Moschos SA, Lindsay MA, Gait MJ (2007) MALDI-TOF mass spectral analysis of siRNA degradation in serum confirms an RNAse A-like activity. Mol Biosyst 3:43–50

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  • van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29:325–326

    PubMed  Google Scholar 

  • van der Goot FG, Gruenberg J (2006) Intra-endosomal membrane traffic. Trends Cell Biol 16:514–521

    PubMed  Google Scholar 

  • van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140(1):13–21

    PubMed  Google Scholar 

  • Wahlgren J, De L, Karlson T, Brisslert M et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40(17):e130

    CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2007) A beta oligomers - a decade of discovery. J Neurochem 101(5):1172–1184

    CAS  PubMed  Google Scholar 

  • Wang S, Cesca F, Loers G et al (2011) Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 31(20):7275–7290

    CAS  PubMed  Google Scholar 

  • Whitehead KA, Dahlman JE, Langer RS, Anderson DG (2011) Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng 2:77–96

    CAS  PubMed  Google Scholar 

  • Xia CF, Boado RJ, Zhang Y, Chu C, Pardridge WM (2008) Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson’s disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. J Gene Med 10(3):306–315

    CAS  PubMed  Google Scholar 

  • Xin H, Li Y, Buller B et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem cells 30(7):1556–1564

    CAS  PubMed  Google Scholar 

  • Xin H, Li Y, Liu Z, Wang X, Shang X, et al (2013) Mir-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotentmesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. doi:10.1002/stem.1409

  • Xue YQ, Ma BF, Zhao LR, Tatom JB, Li B et al (2010) AAV9-mediated erythropoietin gene delivery into the brain protects nigral dopaminergic neurons in a rat model of Parkinson’s disease. Gene Ther 17(1):83–94

    CAS  PubMed  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC et al (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402:533–537

    CAS  PubMed  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    CAS  PubMed  Google Scholar 

  • Zhang Y, Satterlee A, Huang L (2012) In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther 20(7):1298–1304

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Chinese National Natural Science Foundation (No. 81071009, No. 1271412), International S&T Cooperation Project of the Ministry of S&T of China (No. 2010DFR30850), The People’s Livelihood S&T Project, Bureau of S&T of Dalian (No. 2010E11SF008, 2011E12SF030), and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Liu, J., Ji, X. et al. Synthetic nucleic acids delivered by exosomes: a potential therapeutic for generelated metabolic brain diseases. Metab Brain Dis 28, 551–562 (2013). https://doi.org/10.1007/s11011-013-9434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9434-y

Keywords

Navigation