Skip to main content

Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system

Abstract

Major depression is characterized by dysfunction of neuroendocrine and immune networks. Trans-resveratrol, a phenolic compound presented in polygonum cuspidatum, was demonstrated previously to exert antidepressant-like effects through regulating monoaminergic system, oxidative/antioxidant defense and inflammatory response. The present study investigated the synergistic antidepressant-like effect of trans-resveratrol and piperine, a bioavailability enhancer, in mice and explored the possible mechanism. Trans-resveratrol was shown to reduce the immobility time both in the tail suspension and forced swimming tests (TST and FST). But the maximal inhibition was nearly 60 % even if the doses were increased by 160 mg/kg; while piperine produced weak antidepressant-like effects in these two models. The interaction between trans-resveratrol and piperine was shown a clear-cut synergistic effect as evidenced by an isobolographic analysis. The further study suggested that the anti-immobility response from the subthreshold dose of piperine (2.5 mg/kg) and low doses of trans-resveratrol (10 and 20 mg/kg) was abolished by pretreatment with para-chlorophenylalanine (PCPA, 300 mg/kg, i.p.) in TST and FST, indicating the involvement of serotonergic system. Moreover, treatment with the subthreshold dose of piperine and low doses of trans-resveratrol attenuated reserpine-induced hypothermia and ptosis arguing for the relevance of noradrenaline. Additional evidence from neurochemical (monoamines in the frontal cortex, hippocampus, and hypothalamus) and biochemical (monoamine oxidase, MAO activity) assays corroborated the synergistically elevated monoaminergic system after co-treatment with trans-resveratrol and piperine. The present results indicate the effect of trans-resveratrol combined with piperine on depressive-like behaviors may be partly due to the potentiated activation of monoaminergic system in the brain. Further studies are necessary to elucidate the involvement of the oxidative/nitrosative stress, inflammatory and neuroprotective pathway in the antidepressant-like effect of this combination. The synergistic effect obtained from the combination may provide innovative clues for designing novel antidepressants with high efficacy and low side effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arora V, Kuhad A, Tiwari V, Chopra K (2011) Curcumin ameliorates reserpine-induced pain-depression dyad: behavioral, biochemical, neurochemical and molecular evidences. Pychoneuroendocrinology 36:1570–1581

    CAS  Article  Google Scholar 

  • Bai XP, Li HL, Yang WY, Xiao JZ, Wang B, Lou DJ, Du RQ (2011) Sequence of fat partitioning and its relationship with whole body insulin resistance. Chin Med J 36:3605–3611

    Google Scholar 

  • Bhutani MK, Bishnoi M, Kulkarni SK (2009) Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 92:39–43

    PubMed  CAS  Article  Google Scholar 

  • Bourin M, Mocaër E, Porsolt R (2004) Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors. J Psychiatr Neurosci 29:126–133

    Google Scholar 

  • Bourin M, Poncelet M, Chermat R, Simon P (1983) The value of the reserpine test in psychopharmacology. Arzneimittelforschung 33:1173–1176

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  CAS  Article  Google Scholar 

  • Butterweck V, Bockers T, Korte B, Bittkowski W, Winterhoff H (2002) Long-term effects of St. John’s wort and hypericin on monoamine levels in rat hypothalamus and hippocampus. Brain Res 930:21–29

    PubMed  CAS  Article  Google Scholar 

  • Chakrabarti SK, Loua KM, Bai C, Durham H, Panisset JC (1998) Modulation of monoamine oxidase activity in different brain regions and platelets following exposure of rats to methylmercury. Neurotoxicol Teratol 20:161–168

    PubMed  CAS  Article  Google Scholar 

  • Chen X, Zhang N, Zou HY (2007) Protective effect of baicalin on mouse with Parkinson’s disease induced by MPTP. Zhongguo Zhong Xi Yi Jie He Za Zhi 27:1010–1012

    PubMed  Google Scholar 

  • Clausius N, Born C, Grunze H (2009) The relevance of dopamine agonists in the treatment of depression. Neuropsychiatric 23:15–25

    Google Scholar 

  • D’Aquila PA, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 34:S29–S37

    Google Scholar 

  • Dhir A, Naidu PS, Kulkarni SK (2005) Effect of naproxen, a non-selective cyclo-oxygenase inhibitor, on pentylenetetrazol-induced kindling in mice. Clin Exp Pharmacol Physiol 32:574–584

    PubMed  Article  Google Scholar 

  • Elliott PJ, Jirousek M (2008) Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs 9:371–378

    PubMed  CAS  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134:68–77

    PubMed  Article  Google Scholar 

  • Heydendael W, Jacobson L (2008) Differential effects of imipramine and phenelzine on corticosteroid receptor gene expression in mouse brain: potential relevance to antidepressant response. Brain Res 1238:93–107

    PubMed  CAS  Article  Google Scholar 

  • Horn TL, Cwik MJ, Morrissey RL, Kapetanovic I, Crowell JA, Booth TD, McCormick DL (2007) Oncogenicity evaluation of resveratrol in p53(+/−) (p53 knockout) mice. Food Chem Toxicol 45:55–63

    PubMed  CAS  Article  Google Scholar 

  • Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, Mukhtar H, Ahmad N (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Nutr Food Res 55:169–176

    Google Scholar 

  • Kato M, Katayama T, Iwata H, Yamamura M, Matsuoka Y, Narita H (1998) In vivo characterization of T-794, a novel reversible inhibitor of monoamine oxidase-A, as an antidepressant with a wide safety margin. J Pharmacol Exp Ther 284:983–990

    PubMed  CAS  Google Scholar 

  • Khajuria A, Thusu N, Zutshi U (2002) Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine 9:224–231

    PubMed  CAS  Article  Google Scholar 

  • Kohane MJ, Watt WB (1999) Flight-muscle adenylate pool responses to flight demands and thermal constraints in individual Colias eurytheme (Lepidoptera, pieridae). J Exp Biol 202:3145–3154

    PubMed  CAS  Google Scholar 

  • Kulkarni SK, Dhir A (2008) On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 589:163–172

    PubMed  CAS  Article  Google Scholar 

  • Kwon S, Lee B, Kim M, Lee H, Park HJ, Hahm DH (2010) Antidepressant-like effect of the methanolic extract from Bupleurum falcatum in the tail suspension test. Progr Neuro Psychopharmacol Biol Psychiatr 34:265–270

    Article  Google Scholar 

  • Lam RW, Wan DD, Cohen NL, Kennedy SH (2002) Combining antidepressants for treatment-resistant depression: a review. J Clin Psychiatr 63:685–693

    CAS  Article  Google Scholar 

  • Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80:1373–1381

    PubMed  CAS  Article  Google Scholar 

  • Montgomery SA (1997) Is there a role for a pure noradrenergic drug in the treatment of depression? Eur Neuropsychopharmacol 7:S3–S9

    PubMed  CAS  Article  Google Scholar 

  • Ndiaye M, Kumar R, Ahmad N (2011) Resveratrol in cancer management: where are we and where we go from here? Ann New York Acad Sci 1215:144–149

    CAS  Article  Google Scholar 

  • Nemeroff CB (2007) Stress, menopause and vulnerability for psychiatric illness. Expert Rev Neurother 11:S11–S13

    Article  Google Scholar 

  • Nitta J, Akazaki T, Takayanagi H, Arai K (1992) Transport properties in an InAs-inserted-channel In0.52Al0.48As/In0.53Ga0.47As heterostructure coupled superconducting junction. Phys Rev B Condens Matter 46:14286–14289

    PubMed  CAS  Article  Google Scholar 

  • Ogle WO, Speisman RB, Ormerod BK (2013) Potential of treating age-related depression and cognitive decline with nutraceutical approaches: a mini-review. Gerontology 59:23–31

    PubMed  CAS  Article  Google Scholar 

  • Pathak L, Agrawal Y, Dhir A (2013) Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 22:863–880

    PubMed  CAS  Article  Google Scholar 

  • Pineyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51:533–591

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    PubMed  CAS  Article  Google Scholar 

  • Ranney A, Petro MS (2009) Resveratrol protects spatial learning in middle-aged C57BL/6 mice from effects of ethanol. Behav Pharmacol 20:330–336

    PubMed  CAS  Article  Google Scholar 

  • Redrobe JP, Dumont Y, Fournier A, Baker GB, Quirion R (2005) Role of serotonin (5-HT) in the antidepressant-like properties of neuropeptide Y (NPY) in the mouse forced swim test. Peptides 26:1394–1400

    PubMed  CAS  Article  Google Scholar 

  • Rinwa P, Kumar A, Garg S (2013) Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One 8:e61052

    PubMed  CAS  Article  Google Scholar 

  • Rubio G, San L, López-Muñoz F, Alamo C (2004) Reboxetine adjunct for partial or nonresponders to antidepressant treatment. J Affect Disord 81:67–72

    PubMed  CAS  Article  Google Scholar 

  • Tak JK, Lee JH, Park JW (2012) Resveratrol and piperine enhance radiosensitivity of tumor cells. Biochem Mol Biol Rep 45:242–246

    CAS  Google Scholar 

  • Tredici G, Miloso M, Nicolini G, Galbiati S, Cavaletti G, Bertelli A (1999) Resveratrol, map kinases and neuronal cells: might wine be a neuroprotectant? Drugs Exp Clin Res 25:99–103

    PubMed  CAS  Google Scholar 

  • Vanamala J, Reddivari L, Radhakrishnan S, Tarver C (2010) Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC cancer 10:238

    PubMed  Article  Google Scholar 

  • Xu Y, Cai W, Hu JB, Shi QC, Li L (2005a) Levels of common knowledge on common psychiatric disorders and therapeutic means taken in general population: effects of education level and living area. Zhonghua Yu Fang Yi Xue Za Zhi 39:237–240

    PubMed  Google Scholar 

  • Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005b) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82:200–206

    PubMed  CAS  Article  Google Scholar 

  • Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z, Cao X, Wang Y, Liu P, Zhang K (2010a) A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord 127:332–336

    PubMed  CAS  Article  Google Scholar 

  • Xu Y, Wang Z, Zhang X, Li S, Barish PA, Vernon MM, Du X, Li G, Pan J, Ogle WO (2010b) Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 20:405–413

    PubMed  CAS  Article  Google Scholar 

  • Yi LT, Xu Q, Li YC, Yang L, Kong LD (2009) Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice. Progr Neuro Psychopharmacol Biol Psychiatr 33:616–624

    Article  Google Scholar 

  • Yu ZF, Kong LD, Chen Y (2002) Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol 83:161–165

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (No. 30973892), Zhejiang Province Extremely Key Subject Building Funding “Pharmacology and Biochemical Pharmaceutics 2008” and Latitudinal project of Wenzhou Medical University (No. 95012011) for Professor J.C. Pan; Natural Science Foundation of Ningbo (No. 2012A610256) for G.W. Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xu or Jianchun Pan.

Additional information

W Huang, ZY Chen and QD Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tab. 1

(DOCX 16 kb)

Supplementary Tab. 2

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, W., Chen, Z., Wang, Q. et al. Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system. Metab Brain Dis 28, 585–595 (2013). https://doi.org/10.1007/s11011-013-9426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9426-y

Keywords

  • Trans-resveratrol
  • Piperine
  • Synergistic effect
  • Depression
  • Monoamine
  • MAO