Skip to main content
Log in

Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that hyper-glycaemia is deleterious to brain function, in particular to the hippocampus. It is thought this hippocampal dysfunction may contribute to hyperglycaemia related cognitive impairment, such as that which manifests with diabetes. In the present study, we investigated the effects of diabetes-related hyperglycaemia on hippocampal gene expression, in order to identify potential mechanisms that might be associated with the cognitive dysfunction that develops with diabetes mellitus. Genome-wide gene expression profiling was carried out on the hippocampi from streptozotocin (STZ)-induced diabetic mice, and from vehicle treated control mice. Genes of interest that satisfied expression fold-change and statistical criteria, and that were considered to be potentially associated with cognitive function, were further tested by real time, quantitative polymerase chain reaction (qPCR) analysis. We found that STZ-induced diabetes resulted in decreased hippocampal expression of genes involved in epigenetic regulation and synaptic plasticity, for example, histone deacetylases and glycogen synthase kinase 3 beta (HDACs and GSK3β). We also found increased expression of genes involved in signalling cascades related to cell growth, cell survival and energy metabolism, such as neurotropic tyrosine kinase receptor type 2, apolipoprotein E, and protein tyrosine phosphatase receptor type (Ntrk2, APOE, PTPRT). To our knowledge this is the first study to demonstrate a gene expression profile implicating epigenetic modifications and alterations of synaptic plasticity associated genes in diabetes mellitus. The present study will improve our understanding of the neural mechanisms that might underpin diabetes-related cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul-Rahman O et al (2012) Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats. BMC Genomics 13:81

    Article  PubMed  CAS  Google Scholar 

  • Agis-Balboa RC et al (2012) Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 33(1):35–44

    Google Scholar 

  • Alberini CM et al (2012) Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci 35(5):274–283

    Article  PubMed  CAS  Google Scholar 

  • Alipio Z et al (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A 107(30):13426–13431

    Article  PubMed  CAS  Google Scholar 

  • Alvarez EO et al (2009) Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res 198(1):224–230

    Article  PubMed  CAS  Google Scholar 

  • Beauquis J et al (2009) Neuronal plasticity and antidepressants in the diabetic brain. Ann N Y Acad Sci 1153:203–208

    Article  PubMed  Google Scholar 

  • Bekinschtein P et al (2008) BDNF and memory formation and storage. Neuroscientist 14(2):147–156

    Article  PubMed  CAS  Google Scholar 

  • Chen DY et al (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469(7331):491–497

    Article  PubMed  CAS  Google Scholar 

  • Deng W et al (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350

    Article  PubMed  CAS  Google Scholar 

  • Dinant C et al (2008) Chromatin structure and DNA damage repair. Epigenetics Chromatin 1(1):9

    Article  PubMed  Google Scholar 

  • Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8(3):126–132

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SC et al (2003) Apolipoprotein-e influences aspects of intellectual ability in type 1 diabetes. Diabetes 52(1):145–148

    Article  PubMed  CAS  Google Scholar 

  • Garrido JJ et al (2007) GSK3 alpha and GSK3 beta are necessary for axon formation. FEBS Lett 581(8):1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Gatto G et al (2013) Protein tyrosine phosphatase receptor type O inhibits trigeminal axon growth and branching by repressing TrkB and Ret signaling. J Neurosci 33(12):5399–5410

    Article  PubMed  CAS  Google Scholar 

  • Gispen WH et al (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23(11):542–549

    Article  PubMed  CAS  Google Scholar 

  • Greenwood PM et al (2010) Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci 2:150

    Article  PubMed  Google Scholar 

  • Guo JT et al (2002) Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis. J Neurosci 22(14):5900–5909

    PubMed  CAS  Google Scholar 

  • Guo J et al (2010) Impaired neural stem/progenitor cell proliferation in streptozotocin-induced and spontaneous diabetic mice. Neurosci Res 68(4):329–336

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Guilford J et al (2000) The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett 293(2):91–94

    Article  PubMed  CAS  Google Scholar 

  • Jafari Anarkooli I et al (2008) Evaluation of Bcl-2 family gene expression and Caspase-3 activity in hippocampus STZ-induced diabetic rats. Exp Diabetes Res 2008:638467

    Article  PubMed  Google Scholar 

  • Jope RS et al (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102

    Article  PubMed  CAS  Google Scholar 

  • Kim WY et al (2009) GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci 12(11):1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Kim MS et al (2012) An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 32(32):10879–10886

    Article  PubMed  CAS  Google Scholar 

  • Koponen E et al (2004) Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 130(1–2):81–94

    Article  PubMed  CAS  Google Scholar 

  • Lim SH et al (2009) Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn. EMBO J 28(22):3564–3578

    Article  PubMed  CAS  Google Scholar 

  • Lu B et al (2008) Cell biology of BDNF and its relevance to schizophrenia. Novartis Found Symp 289:119–129, discussion 129–35, 193–5

    Article  PubMed  CAS  Google Scholar 

  • Lubin FD et al (2011) Epigenetic mechanisms: critical contributors to long-term memory formation. Neuroscientist 17(6):616–632

    Article  PubMed  CAS  Google Scholar 

  • Ma LY et al (2011) Ghrelin-attenuated cognitive dysfunction in streptozotocin-induced diabetic rats. Alzheimer Dis Assoc Disord 25(4):352–363

    Article  PubMed  CAS  Google Scholar 

  • Malone JI et al (2008) Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes 9(6):531–539

    Article  PubMed  Google Scholar 

  • Marzluff WF et al (2002) The human and mouse replication-dependent histone genes. Genomics 80(5):487–498

    Article  PubMed  CAS  Google Scholar 

  • Marzluff WF et al (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9(11):843–854

    Article  PubMed  CAS  Google Scholar 

  • McNay EC et al (2010) Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 93(4):546–553

    Article  PubMed  CAS  Google Scholar 

  • Ming GL et al (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  PubMed  CAS  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860

    Article  PubMed  CAS  Google Scholar 

  • Mirnics K et al (2004) Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 7(5):434–439

    Article  PubMed  CAS  Google Scholar 

  • Reagan LP et al (1999) Neurological changes induced by stress in streptozotocin diabetic rats. Ann N Y Acad Sci 893:126–137

    Article  PubMed  CAS  Google Scholar 

  • Revsin Y et al (2005) Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 1038(1):22–31

    Article  PubMed  CAS  Google Scholar 

  • Richter-Schmidinger T et al (2011) Influence of brain-derived neurotrophic-factor and apolipoprotein E genetic variants on hippocampal volume and memory performance in healthy young adults. J Neural Transm 118(2):249–257

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD et al (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Smillie KJ et al (2011) The role of GSK3 in presynaptic function. Int J Alzheimers Dis 2011:263673

    Article  PubMed  Google Scholar 

  • Stranahan AM et al (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11(3):309–317

    Article  PubMed  CAS  Google Scholar 

  • Tesch GH, Allen TJ (2007) Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton) 12(3):261–266

    Article  Google Scholar 

  • Tolwani RJ et al (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114(3):795–805

    Article  PubMed  CAS  Google Scholar 

  • Wexler EM et al (2009) Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 27(5):1130–1141

    Article  PubMed  CAS  Google Scholar 

  • Yang T et al (2006) LAR protein tyrosine phosphatase receptor associates with TrkB and modulates neurotrophic signaling pathways. J Neurobiol 66(13):1420–1436

    Article  PubMed  CAS  Google Scholar 

  • Zhang WJ et al (2008) Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurol Scand 117(3):205–210

    Article  PubMed  Google Scholar 

  • Zhang X et al (2013) Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. Biomed Res Int 2013:924327

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug W. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J., Garg, M.L. & Smith, D.W. Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 28, 613–618 (2013). https://doi.org/10.1007/s11011-013-9418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9418-y

Keywords

Navigation