Skip to main content

Advertisement

Log in

Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Phenylketonuria is characterized by a variable degree of mental retardation and other neurological features whose mechanisms are not fully understood. In the present study we investigated the effect of intrahippocampal administration of phenylalanine, isolated or associated with pyruvate or creatine, on rat behavior and on oxidative stress. Sixty-day-old male Wistar rats were randomly divided into 6 groups: saline; phenylalanine; pyruvate; creatine; phenylalanine + pyruvate; phenylalanine + creatine. Phenylalanine was administered bilaterally in the hippocampus one hour before training; pyruvate, at the same doses, was administered in the hippocampus one hour before phenylalanine; creatine was administered intraperitoneally twice a day for 5 days before training; controls received saline solution at same volumes than the other substances. Parameters of exploratory behavior and of emotionality were assessed in both training and test sessions in the open field task. Rats receiving phenylalanine did not habituate to the open field along the sessions, indicating deficit of learning/memory, but parameters of emotionality were normal, not interfering in the habituation process. Pyruvate or creatine administration prevented the lack of habituation caused by phenylalanine. Pyruvate and creatine also prevented alterations provoked by phenylalanine on lipid peroxidation, total content of sulfhydryls, total radical-trapping antioxidant potential and total antioxidant reactivity. The results suggest that the behavioral alterations provoked by intra-hippocampal administration of phenylalanine may be caused, at least in part, by oxidative stress and/or energy deficit. If this also occurs in PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  • Archer J (1973) Tests for emotionality in rats and mice: a review. Ann Behav 21:205–235

    Article  CAS  Google Scholar 

  • Artuch R, Colomé C, Sierra C, Brandi N, Lambruschini N, Campistol J, Ugarte D, Vilaseca MA (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37:198–203

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40:1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Beckers J, Schneider I, Hölter SM, Haack T, Ruthsatz T, Vogt-Weisenhorn DM, Becker L, Genius J, Rujescu D, Irmler M, Mijalski T, Mader M, Quintanilla-Martinez L, Fuchs H, Gailus-Durner V, Hrabé de Angelis M, Wurst W, Schmidte J, Klopstock T (2008) Creatine improves health and survival of mice. Neurobiol Aging 29:1404–1411

    Article  PubMed  CAS  Google Scholar 

  • Berry H, O’Grady D, Perlmutter L, Bofinger M (1979) Intellectual development and academic achievement of children treated early for phenylketonuria. Dev Med Child Neurol 21:311–320

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Burgard P (2006) Disorders of phenylalanine and tetrahydrobiopterin metabolism. In: Blau N, Leonard J, Hoffmann G, Clarke J (eds) Physician’s guide to the treatment and follow-up of metabolic diseases. Springer, Heidelberg, pp 25–34

    Chapter  Google Scholar 

  • Burgard P, Schmidt E, Rupp A, Schneider W, Bremer HJ (1996) Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155(supplement 1):S33–S38

    Article  PubMed  Google Scholar 

  • Cleary MA, Walter JH, Wraith JE, White F, Tyler K, Jenkins JP (1995) Magnetic resonance imaging in phenylketonuria: reversal of cerebral white matter change. J Pediatr 127:251–255

    Article  PubMed  CAS  Google Scholar 

  • Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  PubMed  CAS  Google Scholar 

  • DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305

    Article  PubMed  CAS  Google Scholar 

  • Denenberg VH (1969) Open-field behavior in the rat: what does it mean? Ann N Y Acad Sci 159:852–859

    Article  PubMed  CAS  Google Scholar 

  • Dobson J, Kushida E, Williamson M, Friedman E (1976) Intellectual performance of 36 phenylketonuria patients and their nonaffected siblings. Pediatrics 58:53–58

    PubMed  CAS  Google Scholar 

  • Elias PK, Elias MF, Eleftheriou BE (1975) Emotionality, exploratory behavior and locomotion in aging inbred strains of mice. Gerontologia 21:46–55

    Article  PubMed  CAS  Google Scholar 

  • Ercal N, Aykin-Burns N, Gurer-Orphan H, McDonald JD (2002) Oxidative stress in a phenylketonia animal model. Free Radic Biol Med 32:906–911

    Article  PubMed  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  • Feillet F, Agostoni C (2010) Nutritional issues in treating phenylketonuria. J Inherit Metab Dis 33:659–664

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Rech VC, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CMD (2002) Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochem Res 27:947–952

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Dutra-Filho CS, Wyse ATS, Waijner M, Wannmacher CMD (2003) Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Res 968:199–205

    Article  PubMed  CAS  Google Scholar 

  • Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta A, Vargas CR, Dutra Filho CS, Wajner M (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 30:317–326

    Article  PubMed  CAS  Google Scholar 

  • Fishler K, Azen C, Henderson R, Friedman EG, Koch R (1987) Psychoeducational findings among children treated for phenylketonuria. Am J Ment Defic 92:65–73

    PubMed  CAS  Google Scholar 

  • Fishler K, Azen C, Friedman EG, Koch R (1989) School achievement in treated PKU children. J Ment Defic Res 33:493–498

    PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Frenzel J, Richter J, Eschrich K (2005) Pyruvate protects glucose-deprived muller cells from nitric oxide-induced oxidative stress by radical scavenging. Glia 52:276–288

    Article  PubMed  Google Scholar 

  • Gonzalvez-Flecha B, Lleusy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Radic Biol Med 10:93–100

    Article  Google Scholar 

  • Hagen MEK, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CMD, Wyse ATS, Dutra-Filho CS (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586:344–352

    Google Scholar 

  • Hahn KA, Salomons GS, Tackels-Horne D, Wood TC, Taylor HA, Schroer RJ, Lubs HA, Jakobs C, Olson RL, Holden KR, Stevenson RE, Schwartz CE (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70:1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hanley WB (2004) Adult phenylketonuria. Am J Med 117:590–595

    Article  PubMed  CAS  Google Scholar 

  • Hasselbach S, Knudsen GM, Toft PB, Hogh P, Tedeschi E, Holm S, Videbaek C, Henriksen O, Lou HC, Paulson OB (1996) Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr Res 40:21–24

    Article  Google Scholar 

  • Hegde KR, Kovtun S, Varma SD (2010) Inhibition of glycolysis in the retina by oxidative stress: prevention by pyruvate. Mol Cell Biochem 343:101–105

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo LA, Barros DM, Ardenghi PG, Pereira P, Rodrigues C, Choi H et al (2000) Different hippocampal molecular requeriments for short-and-long-term retrieval o fone-trial avoidance learning. Behav Brain Res 111:93–98

    Article  PubMed  CAS  Google Scholar 

  • Jagtap JC, Chandele A, Chopde BA, Shastry P (2003) Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat 26:109–118

    Article  PubMed  CAS  Google Scholar 

  • Khuchua ZA, Qin W, Boero J, Cheng J, Payne RM, Saks VA et al (1998) Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 273:22990–22996

    Article  PubMed  CAS  Google Scholar 

  • Koch R, Azen C, Friedman EG, Williamson ML (1984) Paired comparisons between early treated PKU children and their matched sibling controls on intelligence and school achievement test results at eight years of age. J Inherit Metab Dis 7:86–90

    Article  PubMed  CAS  Google Scholar 

  • Kugelman A, Choy HA, Liu R, Shi MM, Gozal E, Forman HJ (1994) gamma-Glutamyl transpeptidase is increased by oxidative stress in rat alveolar L2 epithelial cells. Am J Respir Cell Mol Biol 11:586–592

    PubMed  CAS  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  PubMed  CAS  Google Scholar 

  • Leuzzi V, Pansini M, Sechi E, Chiarotti F, Carducci C, Levi G, Antonozzi I (2004) Executive function impairment in early-treated PKU subjects with normal mental development. J Inherit Metab Dis 27:115–125

    Article  PubMed  CAS  Google Scholar 

  • Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2’-azo-bis-(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Gao L, Choi J, Forman HJ (1998) γ-Glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am J Physiol 275(Lung Cell Mol Physiol):L861–L869

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Lewis-Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  • Lütz MG, Feksa LR, Wyse ATS, Dutra-Filho CS, Wajner M, Wannmacher CMD (2003) Alanine prevents the in vitro inhibition of glycolysis caused by phenylalanine in brain cortex of rats. Metab Brain Dis 18:81–94

    Google Scholar 

  • Martinez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM (2002) Oxidative stress induced by phenylketonuria in the rat: prevention by melatonin, vitamin E and vitamin C. J Neurosci Res 69:550–558

    Article  PubMed  CAS  Google Scholar 

  • Maus M, Marin P, Israel M, Glowinski J, Prémont J (1999) Pyruvate and lactate protect striatal neurons against N-methyl-D-aspartate-induced neurotoxicity. Eur J Neurosci 11:3215–3224

    Article  PubMed  CAS  Google Scholar 

  • Mazzio E, Soliman KFA (2003) Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett 337:77–80

    Article  PubMed  CAS  Google Scholar 

  • Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR (2007) Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev 17:91–101

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah F, Feki M, Kaabachi N (2010) Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 42:163–171

    Article  PubMed  Google Scholar 

  • O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 14:253–257

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego, p F35

    Google Scholar 

  • Rae C, Digney AL, McEwan SR, Bates TC (2003) Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc R Soc Lond B Biol Sci 270:2147–2150

    Article  CAS  Google Scholar 

  • Rech VC, Feksa LR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2002) Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res 27:353–357

    Article  PubMed  CAS  Google Scholar 

  • Ribas GS, Sitta A, Wajner M, Vargas CR (2011) Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol 31:653–662

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues NR, Wannmacher CMD, Dutra-Filho CS, Pires RF, Fagan PR, Wajner M (1990) Effect of phenylalanine, p-chloro-phenylalanine and α-methylphenylalanine on glucose uptake in vitro by the brain of young rats. Biochem Soc Trans 18:419

    PubMed  CAS  Google Scholar 

  • Schulpis KH, Tsakiris S, Traeger-Synodinos J, Papassotiriou I (2005) Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin Biochem 38:239–242

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  • Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ (1994) Quinone-induced oxidative stress elevates glutathione and induces y-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem 269(42):26512–26517

    PubMed  CAS  Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, Wajner M, Coelho DM, Llesuy S, Belló-Klein A, Giugliani R, Deon M, Vargas CR (2005) Oxidative stress in pacients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PR et al (2009) Effect of short and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 27:243–247

    Article  PubMed  CAS  Google Scholar 

  • Streijger F, Jost CR, Oerlemans F, Ellenbroek BA, Cools AR, Wieringa B, Van der Zee CE (2004) Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses. Mol Cell Biochem 256–257:305–318

    Article  PubMed  Google Scholar 

  • Takada A, Bannai S (1984) Transport of cystine in isolated rat hepatocytes in primary culture. J Biol Chem 259:2441–2445

    PubMed  CAS  Google Scholar 

  • Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP (1993) Brain MRI changes in phenylketonuria. Association with dietary status. Brain 116:811–821

    Article  PubMed  Google Scholar 

  • Vasques V, Brinco F, Viegas CM, Wajner M (2006) Creatine prevents behavioral alterations caused by methylmalonic acid administration into the hippocampus of rats in the open field task. J Neurol Sci 244:23–29

    Article  PubMed  CAS  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  PubMed  CAS  Google Scholar 

  • Williams RA, Mamotte CDS, Burnett JR (2008) Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev 29:31–41

    PubMed  Google Scholar 

  • Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243–260

    Article  PubMed  CAS  Google Scholar 

  • Xu CJ, Klunk WE, Kanfer JN, Xiong Q, Miller G, Pettegrew JW (1996) Phosphocreatine-dependent glutamate uptake by synaptic vesicles. A comparison with ATP-dependent glutamate uptake. J Biol Chem 271:13435–13440

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Magilnick N, Xia M, Lu SC (2008) Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent. Exp Cell Res 314:398–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóvis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berti, S.L., Nasi, G.M., Garcia, C. et al. Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27, 79–89 (2012). https://doi.org/10.1007/s11011-011-9271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9271-9

Keywords

Navigation