Skip to main content

Advertisement

Log in

Exploratory investigation on nitro- and phospho-proteome cerebellum changes in hyperammonemia and hepatic encephalopathy rat models

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy (HE) is a neurological disease associated with hepatic dysfunction. Current knowledge suggests that hyperammonemia, related to liver failure, is a main factor contributing to the cerebral alterations in HE and that hyperammonemia might impair signal transduction associated with post-translational modification of proteins such as tyrosine-nitration and phosphorylation. However, the molecular bases of the HE remain unclear and very little is known about the occurrence of post-translational modification on in vivo proteins. In this exploratory study we look for evidence of post-translation modifications of proteins in the cerebellum of experimental HE rat models using a proteomic approach. For the first time we showed that hyperammonemia without liver failure (HA rats) and experimental HE with liver failure due to portacaval shunt (PCS rats) lead to a reduced protein nitration in rat cerebellum, where the undernitrated proteins were involved in energy metabolism and cytoskeleton remodelling. Moreover we showed that tyrosine nitration loss of these proteins was not necessarily associated to a change in their phosphorylation state as result of the disease. Interestingly the rat cerebellum phosphoproteome was mainly perturbed in PCS rats, whereas HA rats did not shown appreciable changes in their phosphoprotein profile. Since the protein nitration level decreased similarly in the cerebellum of both HA and PCS rats, this implies that the two disease models share common effects but also present some differential signalling effects in the cerebellum of the same animals. This study highlights the interest for studying the concerted action of multiple signalling pathways in HE development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahl B, Weissenborn K, van den Hoff J, Fischer-Wasels D, Kostler H, Hecker H, Burchert W (2004) Regional differences in cerebral blood flow and cerebral ammonia metabolism in patients with cirrhosis. Hepatology 40:73–79

    Article  PubMed  CAS  Google Scholar 

  • Azorin I, Minana MD, Felipo V, Grisolia S (1989) A simple animal model of hyperammonemia. Hepatology 10:311–314

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw RA, Medzihradszky KF, Chalkley RJ (2010) Protein PTMs: post-translational modifications or pesky trouble makers? J Mass Spectrom 45:1095–1097

    Article  PubMed  CAS  Google Scholar 

  • Carpi D, Korkalainen M, Airoldi L, Fanelli R, Hakansson H, Muhonen V, Tuukkanen J, Viluksela M, Pastorelli R (2009) Dioxin-sensitive proteins in differentiating osteoblasts: effects on bone formation in vitro. Toxicol Sci 108:330–343

    Article  PubMed  CAS  Google Scholar 

  • Cauli O, Llansola M, Erceg S, Felipo V (2006) Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra. J Hepatol 45:654–661

    Article  PubMed  CAS  Google Scholar 

  • Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, El Mlili N, Boix J, Agusti A, Felipo V (2009) Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab Brain Dis 24:69–80

    Article  PubMed  CAS  Google Scholar 

  • Chen BS, Roche KW (2009) Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron 62:471–478

    Article  PubMed  CAS  Google Scholar 

  • Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356

    Article  PubMed  CAS  Google Scholar 

  • Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernandez F, Eickholt BJ, Nikolic M, Sutherland C (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281:16591–16598

    Article  PubMed  CAS  Google Scholar 

  • Corbalan R, Chatauret N, Behrends S, Butterworth RF, Felipo V (2002) Region selective alterations of soluble guanylate cyclase content and modulation in brain of cirrhotic patients. Hepatology 36:1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Duncan MW (2003) A review of approaches to the analysis of 3-nitrotyrosine. Amino Acids 25:351–361

    Article  PubMed  CAS  Google Scholar 

  • Earnest S, Khokhlatchev A, Albanesi JP, Barylko B (1996) Phosphorylation of dynamin by ERK2 inhibits the dynamin-microtubule interaction. FEBS Lett 396:62–66

    Article  PubMed  CAS  Google Scholar 

  • El-Mlili N, Rodrigo R, Naghizadeh B, Cauli O, Felipo V (2008) Chronic hyperammonemia reduces the activity of neuronal nitric oxide synthase in cerebellum by altering its localization and increasing its phosphorylation by calcium-calmodulin kinase II. J Neurochem 106:1440–1449

    Article  PubMed  CAS  Google Scholar 

  • Erceg S, Monfort P, Hernandez-Viadel M, Llansola M, Montoliu C, Felipo V (2005) Restoration of learning ability in hyperammonemic rats by increasing extracellular cGMP in brain. Brain Res 1036:115–121

    Article  PubMed  CAS  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  PubMed  CAS  Google Scholar 

  • Felipo V, Minana MD, Grisolia S (1988) Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem 176:567–571

    Article  PubMed  CAS  Google Scholar 

  • Felipo V, Grau E, Minana MD, Grisolia S (1993) Hyperammonemia decreases protein-kinase-C-dependent phosphorylation of microtubule-associated protein 2 and increases its binding to tubulin. Eur J Biochem 214:243–249

    Article  PubMed  CAS  Google Scholar 

  • Giordano G, Sanchez-Perez AM, Montoliu C, Berezney R, Malyavantham K, Costa LG, Calvete JJ, Felipo V (2005) Activation of NMDA receptors induces protein kinase A-mediated phosphorylation and degradation of matrin 3. Blocking these effects prevents NMDA-induced neuronal death. J Neurochem 94:808–818

    Article  PubMed  CAS  Google Scholar 

  • Gorg B, Qvartskhava N, Bidmon HJ, Palomero-Gallagher N, Kircheis G, Zilles K, Haussinger D (2010) Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 52:256–265

    Article  PubMed  Google Scholar 

  • Gururaj A, Barnes CJ, Vadlamudi RK, Kumar R (2004) Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene 23:8118–8127

    Article  PubMed  CAS  Google Scholar 

  • Haussinger D, Schliess F (2005) Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem Int 47:64–70

    Article  PubMed  Google Scholar 

  • Haussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Haussinger D, Gorg B, Reinehr R, Schliess F (2005) Protein tyrosine nitration in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 20:285–294

    Article  PubMed  Google Scholar 

  • Hawkins RA, Mans AM (1993) Brain metabolism in hepatic encephalopathy and hyperammonemia. Adv Exp Med Biol 341:13–19

    Article  PubMed  CAS  Google Scholar 

  • Hazell AS, Butterworth RF (1999) Hepatic encephalopathy: an update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 222:99–112

    Article  PubMed  CAS  Google Scholar 

  • Hermenegildo C, Montoliu C, Llansola M, Munoz MD, Gaztelu JM, Minana MD, Felipo V (1998) Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur J Neurosci 10:3201–3209

    Article  PubMed  CAS  Google Scholar 

  • Holness MJ, Sugden MC (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans 31:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Hou ST, Jiang SX, Aylsworth A, Ferguson G, Slinn J, Hu H, Leung T, Kappler J, Kaibuchi K (2009) CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. J Neurochem 111:870–881

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Maeda A, Takefuji M, Aoyama H, Nakayama M, Kawabata S, Kawano Y, Iwamatsu A, Amano M, Kaibuchi K (2005) Rho mediates endocytosis of epidermal growth factor receptor through phosphorylation of endophilin A1 by Rho-kinase. Genes Cells 10:973–987

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Choi MY, Kim YH, Jeon BT, Lee DH, Roh GS, Kang SS, Kim HJ, Cho GJ, Choi WS (2010) Protein kinase Cdelta is associated with 14-3-3 phosphorylation in seizure-induced neuronal death. Epilepsy Res 92:30–40

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Suzuki H, Nakano Y (1988) Regulation of glutamine synthetase activity by phosphorylation instead of by adenylylation. Biochem Biophys Res Commun 155:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci U S A 94:2168–2173

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Fisher B (1961) Portacaval shunt in the rat. Surgery 50:668–672

    PubMed  CAS  Google Scholar 

  • Liaudet L, Vassalli G, Pacher P (2009) Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 14:4809–4814

    Article  PubMed  Google Scholar 

  • Llansola M, Erceg S, Felipo V (2005) Chronic exposure to ammonia alters the modulation of phosphorylation of microtubule-associated protein 2 by metabotropic glutamate receptors 1 and 5 in cerebellar neurons in culture. Neuroscience 133:185–191

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH, Yap EW, Rhoades HM, Wong WH (1991) Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 11:331–336

    Article  PubMed  CAS  Google Scholar 

  • Lopez CJ, Qayyum I, Mishra OP, Delivoria-Papadopoulos M (2005) Effect of nitration on protein tyrosine phosphatase and protein phosphatase activity in neuronal cell membranes of newborn piglets. Neurosci Lett 386:78–81

    Article  PubMed  CAS  Google Scholar 

  • Mallozzi C, Ceccarini M, Camerini S, Macchia G, Crescenzi M, Petrucci TC, Di Stasi AM (2009) Peroxynitrite induces tyrosine residue modifications in synaptophysin C-terminal domain, affecting its interaction with src. J Neurochem 111:859–869

    Article  PubMed  CAS  Google Scholar 

  • Minetti M, Mallozzi C, Di Stasi AM (2002) Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med 33:744–754

    Article  PubMed  CAS  Google Scholar 

  • Mizutani A, Kuroda Y, Futatsugi A, Furuichi T, Mikoshiba K (2008) Phosphorylation of Homer3 by calcium/calmodulin-dependent kinase II regulates a coupling state of its target molecules in Purkinje cells. J Neurosci 28:5369–5382

    Article  PubMed  CAS  Google Scholar 

  • Monfort P, Kosenko E, Erceg S, Canales JJ, Felipo V (2002) Molecular mechanism of acute ammonia toxicity: role of NMDA receptors. Neurochem Int 41:95–102

    Article  PubMed  CAS  Google Scholar 

  • Monfort P, Erceg S, Piedrafita B, Llansola M, Felipo V (2007) Chronic liver failure in rats impairs glutamatergic synaptic transmission and long-term potentiation in hippocampus and learning ability. Eur J Neurosci 25:2103–2111

    Article  PubMed  Google Scholar 

  • Monteiro HP (2002) Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med 33:765–773

    Article  PubMed  CAS  Google Scholar 

  • Monteiro HP, Arai RJ, Travassos LR (2008) Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid Redox Signal 10:843–889

    Article  PubMed  CAS  Google Scholar 

  • Morishita W, Connor JH, Xia H, Quinlan EM, Shenolikar S, Malenka RC (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32:1133–1148

    Article  PubMed  CAS  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246

    Article  PubMed  CAS  Google Scholar 

  • Pastorelli R, Carpi D, Campagna R, Airoldi L, Pohjanvirta R, Viluksela M, Hakansson H, Boutros PC, Moffat ID, Okey AB, Fanelli R (2006) Differential expression profiling of the hepatic proteome in a rat model of dioxin resistance: correlation with genomic and transcriptomic analyses. Mol Cell Proteomics 5:882–894

    Article  PubMed  CAS  Google Scholar 

  • Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17:1688–1699

    Article  PubMed  CAS  Google Scholar 

  • Quest AF, Soldati T, Hemmer W, Perriard JC, Eppenberger HM, Wallimann T (1990) Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. FEBS Lett 269:457–464

    Article  PubMed  CAS  Google Scholar 

  • Rao KV, Norenberg MD (2001) Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 16:67–78

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo R, Erceg S, Rodriguez-Diaz J, Saez-Valero J, Piedrafita B, Suarez I, Felipo V (2007) Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure. J Neurochem 102:51–64

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Perez AM, Felipo V (2006) Chronic exposure to ammonia alters basal and NMDA-induced phosphorylation of NMDA receptor-subunit NR1. Neuroscience 140:1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Schiarea S, Solinas G, Allavena P, Scigliuolo GM, Bagnati R, Fanelli R, Chiabrando C (2010) Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. J Proteome Res 9:4376–4392

    Article  PubMed  CAS  Google Scholar 

  • Schliess F, Gorg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Haussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16:739–741

    PubMed  CAS  Google Scholar 

  • Suarez I, Bodega G, Arilla E, Felipo V, Fernandez B (2006) The expression of nNOS, iNOS and nitrotyrosine is increased in the rat cerebral cortex in experimental hepatic encephalopathy. Neuropathol Appl Neurobiol 32:594–604

    Article  PubMed  CAS  Google Scholar 

  • Vinatier J, Herzog E, Plamont MA, Wojcik SM, Schmidt A, Brose N, Daviet L, El Mestikawy S, Giros B (2006) Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. J Neurochem 97:1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Voglmaier SM, Kam K, Yang H, Fortin DL, Hua Z, Nicoll RA, Edwards RH (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51:71–84

    Article  PubMed  CAS  Google Scholar 

  • Yoo Y, Ho HJ, Wang C, Guan JL (2010) Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene 29:263–272

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Cavallaro S, Gusev P, Alkon DL (2000) Nonreceptor tyrosine protein kinase pp 60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions. Proc Natl Acad Sci U S A 97:8098–8103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from Ministerio de Ciencia Innovacion (SAF2008-00062, CSD2008-00005) of Spain and from Conselleria de Educacion (ACOMP-2009-025; PROMETEO/2009/027; ACOMP-2010-220) and Conselleria de Sanitat (AP-024/08, AP-092/09; AP-043/10) of Generalitat Valenciana.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pastorelli.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Submission parameters for the identification of nitrated proteins (DOC 39 kb)

Table S2

Submission parameters for the identification of phosphorylated proteins (DOC 39 kb)

Table S3

Proteins and petides identification_nitrated proteins (XLS 82 kb)

Table S4

Proteins and peptides identification_phopshorylated proteins (XLS 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunelli, L., Campagna, R., Airoldi, L. et al. Exploratory investigation on nitro- and phospho-proteome cerebellum changes in hyperammonemia and hepatic encephalopathy rat models. Metab Brain Dis 27, 37–49 (2012). https://doi.org/10.1007/s11011-011-9268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9268-4

Keywords

Navigation