Metabolic Brain Disease

, Volume 25, Issue 1, pp 73–80 | Cite as

Hyponatremic and hepatic encephalopathies: similarities, differences and coexistence

  • Juan Córdoba
  • Rita García-Martinez
  • Macarena Simón-Talero
Original Paper


Hyponatremic and hepatic encephalopathy are common causes of metabolic encephalopathy that may coexist in patients with cirrhosis. The clinical picture is common to any metabolic encephalopathy and is characterized by a confusional syndrome that may evolve into coma. Chronic mild or minimal manifestations can be seen in both, but motor symptoms are more common in hepatic encephalopathy. Recent advances show that in addition to clinical manifestations both encephalopathies share some pathogenetic mechanisms. Dysfunction of astrocytes, osmotic changes in the brain and brain edema are present in both situations. Recognition of these abnormalities is important to plan therapy. New drugs that affect brain hydration may be useful for both encephalopathies.


Metabolic encephalopathy Hepatic encephalopathy Liver failure Cirrhosis complications Human 


  1. Adrogue HJ, Madias NE (2000) Hyponatremia. N Engl J Med 342:1581–1589CrossRefPubMedGoogle Scholar
  2. Amodio P, Del Piccolo F, Petteno E et al (2001) Prevalence and prognostic value of quantified electroencephalogram (EEG) alterations in cirrhotic patients. J Hepatol 35:37–45CrossRefPubMedGoogle Scholar
  3. Amodio P, Biancardi A, Montagnese S et al (2007) Neurological complications after orthotopic liver transplantation. Dig Liver Dis 39(8):740–747CrossRefPubMedGoogle Scholar
  4. Angeli P, Wong F, Watson H, Gines P (2006) Hyponatremia in cirrhosis: results of a patient population survey. Hepatology 44:1535–1542CrossRefPubMedGoogle Scholar
  5. Arieff AI (2001) Treatment of hyponatremic encephalopathy with antagonists to antidiuretic hormone. J Lab Clin Med 138:8–10CrossRefPubMedGoogle Scholar
  6. Arieff AI, Guisado R (1976) Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 10:104–116CrossRefPubMedGoogle Scholar
  7. Arieff AI, Llach F, Massry SG (1976) Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore) 55:121–129CrossRefGoogle Scholar
  8. Blei AT, Cordoba J (2001) Hepatic encephalopathy. Practice guidelines of the American College of Gastroenterology. Am J Gastroenterol 96:1968–1976CrossRefPubMedGoogle Scholar
  9. Brusilow SW (1986) Hepatic encephalopathy (letter). N Eng J Med 314:786Google Scholar
  10. Bustamante J, Rimola A, Ventura P et al (1999) Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J Hepatol 30:890–895CrossRefPubMedGoogle Scholar
  11. Butterworth RF (1996) The neurobiology of hepatic encephalopathy. Semin Liver Dis 16:235–244CrossRefPubMedGoogle Scholar
  12. Butterworth RF (2003) Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular studies. J Hepatol 39:278–285CrossRefPubMedGoogle Scholar
  13. Clemmesen JO, Larsen FS, Kondrup J, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29(3):648–653CrossRefPubMedGoogle Scholar
  14. Cooper JL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519PubMedGoogle Scholar
  15. Cordoba J, Minguez B (2008) Hepatic encephalopathy. Semin Liver Dis 28:70–80CrossRefPubMedGoogle Scholar
  16. Cordoba J, Gottstein J, Blei AT (1996) Glutamine, myo-inositol and other organic osmolytes after portacaval anastomosis in the rat. Implications for ammonia-induced brain edema. Hepatology 24:919–923PubMedGoogle Scholar
  17. Cordoba J, Gottstein J, Blei AT (1998) Hyponatremia exacerbates ammonia-induced brain edema in rats after portacaval anastomosis. J Hepatol 29:589–594CrossRefPubMedGoogle Scholar
  18. Cordoba J, Alonso J, Rovira A et al (2001) The development of low-grade cerebral edema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. J Hepatol 35:598–604CrossRefPubMedGoogle Scholar
  19. Cordoba J, Sanpedro F, Alonso J, Rovira A (2002) 1H-magnetic resonance in the study of hepatic encephalopathy in humans. Metab Brain Dis 17:415–429CrossRefPubMedGoogle Scholar
  20. Cordoba J, Raguer N, Flavia M et al (2003) T2 hyperintesity along the cortico-spinal tract in cirrhosis relates to functional abnormalities. Hepatology 38:1026–1033CrossRefPubMedGoogle Scholar
  21. Cordoba J, Guevara M, Watson H, Le Guennec S, Gines P (2009) Improvement of hyponatremia in cirrhosis increases speed of complex information processing. Hepatology 50 S4 451AGoogle Scholar
  22. Donovan JP, Shafer DF, Shaw BW Jr, Sorrell MF (1998) Cerebral oedema and increased intracranial pressure in chronic liver disease. Lancet 351:719–721CrossRefPubMedGoogle Scholar
  23. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35:716–721CrossRefPubMedGoogle Scholar
  24. Gage PW, Quastel DM (1965) Influence of sodium ions on transmitter release. Nature 206:1047–1048CrossRefPubMedGoogle Scholar
  25. Garcia-Martinez R, Rovira A, Alonso J et al (2010) A long-term study of changes in the volume of brain ventricles and white matter lesions following successful liver transplantation. Transplantation (28), in pressGoogle Scholar
  26. Guevara M, Baccaro ME, Torre A et al (2009) Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis. Am J Gastroenterol 104:1382–1389CrossRefPubMedGoogle Scholar
  27. Haussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165CrossRefPubMedGoogle Scholar
  28. Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038CrossRefPubMedGoogle Scholar
  29. Inouye SK (2006) Delirium in older persons. N Engl J Med 354:1157–1165CrossRefPubMedGoogle Scholar
  30. Jalan R, Kapoor D (2004) Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin Sci (Lond) 106:467–474CrossRefGoogle Scholar
  31. Jalan R, Dabos K, Redhead DN, Lee A, Hayes PC (1997) Elevation of intracranial pressure following transjugular intrahepatic portosystemic stent-shunt for variceal haemorrhage. J Hepatol 27:928–933CrossRefPubMedGoogle Scholar
  32. Kale RA, Gupta RK, Saraswat VA et al (2006) Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology 43:698–706CrossRefPubMedGoogle Scholar
  33. Kreis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182:19–27PubMedGoogle Scholar
  34. Lien YH, Shapiro JI, Chan L (1991) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Invest 88:303–309CrossRefPubMedGoogle Scholar
  35. Llach J, Gines P, Arroyo V et al (1988) Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology 94:482–487PubMedGoogle Scholar
  36. Manley GT, Fujimura M, Ma T et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163CrossRefPubMedGoogle Scholar
  37. McManus ML, Churchwell KB, Strange K (1995) Regulation of cell volume in health and disease. N Engl J Med 333:1260–1266CrossRefPubMedGoogle Scholar
  38. Melton JE, Patlak CS, Pettigrew KD, Cserr HF (1987) Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia. Am J Physiol 252:F661–F669PubMedGoogle Scholar
  39. Minguez B, Rovira A, Alonso J, Cordoba J (2007) Decrease in the volume of white matter lesions with improvement of hepatic encephalopathy. AJNR Am J Neuroradiol 28:1499–1500CrossRefPubMedGoogle Scholar
  40. Murphy N, Auzinger G, Bernel W, Wendon J (2004) The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology 39:464–470CrossRefPubMedGoogle Scholar
  41. Norenberg MD (1996) Astrocytic-ammonia interactions in hepatic encephalopathy. Semin Liver Dis 16:245–253CrossRefPubMedGoogle Scholar
  42. Ortiz M, Jacas C, Cordoba J (2005) Minimal hepatic encephalopathy: diagnosis, clinical significance and recommendations. J Hepatol 42(Suppl):S45–S53CrossRefPubMedGoogle Scholar
  43. Plum F, Posner JB (1982) The diagnosis of stupor and coma. Davis, PhiladelphiaGoogle Scholar
  44. Poordad FF (2007) Review article: the burden of hepatic encephalopathy. Aliment Pharmacol Ther 25(Suppl 1):3–9PubMedCrossRefGoogle Scholar
  45. Rama Rao KV, Norenberg MD (2007) Aquaporin-4 in hepatic encephalopathy. Metab Brain Dis 22(3–4):265–275CrossRefPubMedGoogle Scholar
  46. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G (2006) Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 119:71–78CrossRefPubMedGoogle Scholar
  47. Restuccia T, Gomez-Anson B, Guevara M et al (2004) Effects of dilutional hyponatremia on brain organic osmolytes and water content in patients with cirrhosis. Hepatology 39:1613–1622CrossRefPubMedGoogle Scholar
  48. Rovira A, Cordoba J, Raguer N, Alonso J (2002) Magnetic resonance imaging measurement of brain edema in patients with liver disease: resolution after transplantation. Curr Opin Neurol 15:731–737CrossRefPubMedGoogle Scholar
  49. Schrier RW, Gross P, Gheorghiade M et al (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112CrossRefPubMedGoogle Scholar
  50. Shah NJ, Neeb H, Kircheis G, Engels P, Haussinger D, Zilles K (2008) Quantitative cerebral water content mapping in hepatic encephalopathy. Neuroimage 41:706–717CrossRefPubMedGoogle Scholar
  51. Sharma BC, Sharma P, Agrawal A, Sarin SK (2009a) Secondary prophylaxis of hepatic encephalopathy: an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology 137:885–891, 891CrossRefPubMedGoogle Scholar
  52. Sharma P, Sharma BC, Sarin SK (2009b) Predictors of nonresponse to lactulose for minimal hepatic encephalopathy in patients with cirrhosis. Liver Int 29:1365–1371CrossRefPubMedGoogle Scholar
  53. Shawcross DL, Balata S, Olde Damink SWM et al (2004) Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol 287:G503–G509Google Scholar
  54. Sterns RH, Cappuccio JD, Silver SM, Cohen EP (1994) Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol 4:1522–1530PubMedGoogle Scholar
  55. Takahashi H, Koehler RC, Brusilow SW, Traytsman RJ (1992) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperamonemic rats. Am J Physiol 261:H825–H829Google Scholar
  56. Ware AJ, D’Agostino AN, Combes B (1971) Cerebral edema: a major complication of massive hepatic necrosis. Gastroenterology 61:877–884PubMedGoogle Scholar
  57. Wasterlain CG, Torack RM (1968) Cerebral edema in water intoxication. II. An ultrastructural study. Arch Neurol 19:79–87PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Juan Córdoba
    • 1
    • 2
    • 3
  • Rita García-Martinez
    • 1
    • 2
  • Macarena Simón-Talero
    • 1
    • 2
  1. 1.Servei de Medicina Interna-HepatologiaHospital Universitari Vall d’HebronBarcelonaSpain
  2. 2.Departament de MedicinaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.CIBERehd, Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations