Skip to main content
Log in

Protective effect of antioxidants on cerebrum oxidative damage caused by arginine on pyruvate kinase activity

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

We have demonstrated that acute arginine administration decreases antioxidant defenses and compromises enzymes of respiratory chain in rat brain. In this study we evaluated in vivo and in vitro effect of arginine on pyruvate kinase activity, as well as its effect on an important parameter of oxidative stress namely thiobarbituric acid-reactive substances (TBA-RS) in cerebrum of rats. We also tested the influence of antioxidants, namely α -tocopherol plus ascorbic acid on the effects elicited by arginine in order to investigate the possible participation of free radicals on the effects of arginine on these parameters. Results showed that arginine acute administration inhibited pyruvate kinase activity in cerebrum of rats, as well as increased TBA-RS. By the other hand, arginine added to the incubation medium, in vitro studies, did not alter these parameters in rat cerebrum. In addition, pretreatment with antioxidants prevented the reduction of pyruvate kinase activity and the increase of TBA-RS caused by arginine. The data indicate that acute administration of arginine induces lipid peroxidation in rat cerebrum and that the inhibition of pyruvate kinase activity caused by this amino acid was probably mediated by free radicals since antioxidants prevented such effect. It is presumed that these results might be associated, at least in part, with the neuronal dysfunction of patients affected by hyperargininemia. Finally, we suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diets in hyperargininemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bavaresco CS, Calcagnotto T, Tagliari B, Delwing D, Lamers ML, Wannmacher CM, Wajner M, Wyse AT (2003) Brain Na+,K+-ATPase inhibition induced by arginine administration is prevented by vitamins E and C. Neurochem Res 28:825–829

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS. SOD and peroxynitrite. Nature 364:584

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Horwich A (2001) Urea Cycle enzymes. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  • Buchmann I, Milakofsky L, Harris N, Hofford JM, Vogel WH (1996) Effect of arginine administration on plasma and brain levels of arginine and various related amino compounds in the rat. Pharmacology 53:133–142

    Article  PubMed  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Wronska U, Stone L, Foster DO, Ingold KU (1990) Biokinetics of dietary RRR-α-tocopherol in the male guinea-pig at three dietary levels of vitamin C and two levels of vitamin E. Lipids 25:199–210

    Article  PubMed  CAS  Google Scholar 

  • Carr A, Frei B (1999) Does Vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024

    PubMed  CAS  Google Scholar 

  • Cini M, Fariello RG, Bianchetti A, Moretti A (1994) Studies on lipid peroxidation in the rat brain. Neurochem Res 19:283–288

    Article  PubMed  CAS  Google Scholar 

  • Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: a question of balance. FEBS Letters 369:131–135

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Delwing D, Wannamacher CMD, Wajner M, Dutra-Filho CS, Wyse ATS (2002) Arginine administration reduces catalase activity in midbrain of rats. NeuroReport 13:1301–1304

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Tagliari B, Streck EL, Wannamacher CMD, Wajner M, Wyse ATS (2003) Reduction of energy metabolism in rat hippocampus by aginine administration. Brain Res 983:58–63

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Tagliari B, Chiarani F, Wannmacher CMD, Wajner M, Wyse ATS (2006) α-tocopherol and ascorbic acid administration prevents the impairment of brain energy metabolism of hyperargininemic rats. Cell Mol Neurobiol 26:177–189

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Delwing D, Bavaresco CS, Wyse ATS (2007a) Protective effect of nitric synthase inhibition or antioxidants on brain oxidative damage caused by intracerebroventricular arginine administration. Brain Res 1193:120–127

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Cornélio AR, Wajner M, Wannmacher CMD, Wyse ATS (2007b) Arginine administration reduces creatine kinase activity in rat cerebellum. Metab Brain Dis 22:13–23

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Stefanello FM, Perry MLS, Wyse ATS (2007c) Inhibition of CO2 production from glucose by arginine in brain slices of rats. Metab Brain Dis 22:145–55

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Rech VC, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2002) Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochem Res 27:947–952

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Vargas CR, Wyse ATS, Dutra-Filho CS, Wajner M, Wannmacher CMD (2003) Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metab Brain Dis 18:129–137

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2004) Inhibition of pyruvate kinase activity by cystine in brain cortex of rats. Brain Res 1012:93–100

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Frei B, Stocker R, England L, Ames BN (1990) Ascorbate: the most effective antioxidant in the blood. Adv Exp Med Biol 264:155–163

    PubMed  CAS  Google Scholar 

  • Gahl WA, Thoene JG, Schneider JA (2001) Cystinosis: a disorder of lysosomal membrane transport. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 5085–5108

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Oxygen radicals and nervous system. Trends Neurosci 8:22–26

    Article  CAS  Google Scholar 

  • Halliwell B (1996) Free radicals, protein and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Oxidative stress: adaptation, damage, repair and death. In: Free radicals in biology and medicine, third ed. Oxford University Press, Oxford, pp 246–349

  • Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S (1998) The human arginases and arginase deficiency. J Inherit Metab Dis 21:86–100

    Article  PubMed  CAS  Google Scholar 

  • Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Levy HL (2001) Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • McCay PB (1985) Vitamin E: interactions with free radical and ascorbate. Annu Rev Nutr 5:323–340

    Article  PubMed  CAS  Google Scholar 

  • Niki E (1991) Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54:1119S–1124S

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Reis EA, Oliveira LS, Lamers ML, Netto CA, Wyse ATS (2002) Arginine administration inhibits hippocampal Na + , K + -ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res 951:151–157

    Article  PubMed  Google Scholar 

  • Reznick AZ, Packer L (1993) Free radicals and antioxidants in muscular neurological diseases and disorders. In: Poli G, Albano E, Dianzani MU (eds) Free radicals: from basic science to medicine. Birkhäuser Verlag, Basel, pp 425–437

    Google Scholar 

  • Sandy MS, DiMonte D, Smith MT (1988) Relationships between intracellular vitamin E, lipid peroxidation, and chemical toxicity in hepatocytes. Toxicol Appl Pharmacol 93:288–297

    Article  PubMed  CAS  Google Scholar 

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336:1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Smith C, Marks AD, Lieberman M (2005) Mark’s basic medical biochemistry. Baltimore, Ed. Lippincott Williams Wilkins, 2 ed

  • Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc.) 67:281–292

    Article  CAS  Google Scholar 

  • Wyse ATS, Bavaresco CS, Bandinelli C, Streck EL, Franzon R, Dutra-Filho CS, Wajner M (2001) Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+, K+-ATPase activity in midbrain of rats subjected to arginine administration. Neurochem Res 26:515–520

    Article  PubMed  CAS  Google Scholar 

  • Wyse ATS, Zugno AI, Streck EL, Matte C, Calcagnotto T, Wannmacher CMD, Wajner M (2002) Inhibition of Na+, K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  • Wyse ATS, Stefanello FM, Chiarani F, Delwing D, Wannmacher CMD, Wajner M (2004) Arginine administration decreases cerebral cortex acetylcholinesterase and serum butyrylcholinesterase probably by oxidative stress induction. Neurochem Res 29:385–389

    Article  PubMed  CAS  Google Scholar 

  • Yufu K, Itho T, Edamatsu R, Mori A, Hirakawa M (1993) Effect of hyperbaric oxygenation on the Na+, K+-ATPase and membrane fluidity of cerebrocortical membranes after experimental subarachnoid hemorrhage. Neurochem Res 16:1033–1039

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Universidade Regional de Blumenau—Edital interno de apoio à Pesquisa e Extensão and PMUC/FAPESC/FURB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Delwing.

Additional information

Débora Delwing and Daniela Delwing de Lima Both are first authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delwing, D., Delwing de Lima, D., Scolaro, B. et al. Protective effect of antioxidants on cerebrum oxidative damage caused by arginine on pyruvate kinase activity. Metab Brain Dis 24, 469–479 (2009). https://doi.org/10.1007/s11011-009-9152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9152-7

Keywords

Navigation