Skip to main content
Log in

Phosphodiesterase 4B2 gene is an effector of Toll-like receptor signaling in astrocytes

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cyclic AMP is part of an endogenous mechanism that downregulates inflammatory response, and its intracellular concentration is regulated chiefly by cyclic nucleotide phosphodiesterases type 4. The goal of the present study was to determine whether phosphodiesterases 4 are involved in the inflammatory response of astrocytes mediated by Toll-like receptors. Astrocyte cultures established from newborn rat brain were challenged with lipoteichoic acid, a ligand of Toll-like receptor 2, polyinosinic-polycytidylic acid, a ligand of Toll-like receptor 3, or lipopolysaccharide, a ligand of Toll-like receptor 4. After 24 h the expression of genes encoding phosphodiesterase 4A, phosphodiesterase 4B and phosphodiesterase 4D was determined by real time reverse transcription polymerase chain reaction. The challenge of astrocytes with the ligands profoundly up-regulated expression of the phosphodiesterase 4B mRNA, while the phosphodiesterase 4A and 4D mRNA was either unaffected or downregulated. Moreover, Toll-like receptor ligation specifically up-regulated expression of the phosphodiesterase 4B2 transcriptional variant. Thus, polyinosinic-polycytidylic acid, lipopolysaccharide and lipoteichoic acid induced approximately 7-, 5- and 4-fold up-regulation of the message, respectively. Toll-like receptor ligation also led to an over 2-fold increase in the protein level of phosphodiesterase 4B2 as revealed by immunoblot analysis. The inactivation of Rho proteins by pretreatment with toxin B form C. difficile enhanced ligation-induced up-regulation of the phosphodiesterase 4B2 message by 4-9-fold. However, in spite of this increase in the message abundance, there was no increase in the protein level compared to cells challenged with the ligands alone. These results demonstrate that the phosphodiesterase 4B2 gene is an effector of Toll-like receptor signaling in astrocytes, and that its up-regulation at the protein level is controlled by complex mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  • Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26:149–188

    PubMed  CAS  Google Scholar 

  • Barnes PJ (2003) New concepts in chronic obstructive pulmonary disease. Annu Rev Med 54:113–129

    Article  PubMed  CAS  Google Scholar 

  • Barnette MS, Underwood DC (2000) New phosphodiesterase inhibitors as therapeutics for the treatment of chronic lung disease. Curr Opin Pulm Med 6:164–169

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12:2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Rodgers L, Riggs M (1994) Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterases. Gene 149:237–244

    Article  PubMed  CAS  Google Scholar 

  • Boquet P (1999) Bacterial toxins inhibiting or activating small GTP-binding proteins. Ann N Y Acad Sci 886:83–90

    Article  PubMed  CAS  Google Scholar 

  • Borysiewicz E, Fil D, Konat GW (2009) Rho proteins are negative regulators of TLR2, TLR3 and TLR4 signaling in astrocytes. J Neurosci Res 87:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Jin SL (1999) The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol 63:1–38

    Article  PubMed  CAS  Google Scholar 

  • Dlaboga D, Hajjhussein H, O’Donnell JM (2008) Chronic haloperidol and clozapine produce different patterns of effects on phosphodiesterase-1B, -4B, and -10A expression in rat striatum. Neuropharmacology 54:745–754

    Article  PubMed  CAS  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  PubMed  CAS  Google Scholar 

  • D’Sa C, Tolbert LM, Conti M, Duman RS (2002) Regulation of cAMP-specific phosphodiesterases type 4B and 4D (PDE4) splice variants by cAMP signaling in primary cortical neurons. J Neurochem 81:745–757

    Article  PubMed  Google Scholar 

  • Fan H, Cook JA (2004) Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 10:71–84

    Article  PubMed  CAS  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  PubMed  CAS  Google Scholar 

  • Giembycz MA (2002) Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far. Monaldi Arch Chest Dis 57:48–64

    PubMed  CAS  Google Scholar 

  • Houslay MD, Sullivan M, Bolger GB (1998) The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv Pharmacol 44:225–342

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Ducharme Y, Macdonald D, Robichaud A (2001) The next generation of PDE4 inhibitors. Curr Opin Chem Biol 5:432–438

    Article  PubMed  CAS  Google Scholar 

  • Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987

    Article  PubMed  CAS  Google Scholar 

  • Konat GW, Krasowska-Zoladek A, Kraszpulski M (2008) Statins enhance toll-like receptor 4-mediated cytokine gene expression in astrocytes: implication of Rho proteins in negative feedback regulation. J Neurosci Res 86:603–609

    Article  PubMed  CAS  Google Scholar 

  • Krasowska-Zoladek A, Banaszewska M, Kraszpulski M, Konat GW (2007) Kinetics of inflammatory response of astrocytes induced by TLR 3 and TLR4 ligation. J Neurosci Res 85:205–212

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Wu P, Egan RW, Billah MM, Wang P (1999) Phosphodiesterase 4B gene transcription is activated by lipopolysaccharide and inhibited by interleukin-10 in human monocytes. Mol Pharmacol 55:50–57

    PubMed  CAS  Google Scholar 

  • Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3–10

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Engels P, Fozard JR (1996) Subtypes of the type 4 cAMP phosphodiesterases: structure, regulation and selective inhibition. Trends Pharmacol Sci 17:294–298

    Article  PubMed  CAS  Google Scholar 

  • O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  CAS  Google Scholar 

  • Palfreyman MN, Souness JE (1996) Phosphodiesterase type IV inhibitors. Prog Med Chem 33:1–52

    Article  PubMed  CAS  Google Scholar 

  • Sandor F, Buc M (2005a) Toll-like receptors. I. Structure, function and their ligands. Folia Biol (Praha) 51:148–157

    CAS  Google Scholar 

  • Sandor F, Buc M (2005b) Toll-like receptors. II. Distribution and pathways involved in TLR signalling. Folia Biol (Praha) 51:188–197

    CAS  Google Scholar 

  • Shepherd M, McSorley T, Olsen AE, Johnston LA, Thomson NC, Baillie GS, Houslay MD, Bolger GB (2003) Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochem J 370:429–438

    Article  PubMed  CAS  Google Scholar 

  • Tasken KA, Collas P, Kemmner WA, Witczak O, Conti M, Tasken K (2001) Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem 276:21999–22002

    Article  PubMed  CAS  Google Scholar 

  • Torphy TJ (1998) Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med 157:351–370

    PubMed  CAS  Google Scholar 

  • Wang P, Wu P, Ohleth KM, Egan RW, Billah MM (1999) Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol 56:170–174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by NIH grants NS051787, MH051175 and MH040694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory W. Konat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borysiewicz, E., Fil, D., Dlaboga, D. et al. Phosphodiesterase 4B2 gene is an effector of Toll-like receptor signaling in astrocytes. Metab Brain Dis 24, 481–491 (2009). https://doi.org/10.1007/s11011-009-9150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9150-9

Keywords

Navigation