Skip to main content
Log in

The molecular mechanisms of cell death in the course of transient ischemia are differentiated in evolutionary distinguished brain structures

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

There is large body of evidence suggesting distinct susceptibility to ischemia in various brain regions. However, the reason for this remains unexplained. Comparative studies of programmed cell death (PCD) pathways indicate their differentiated evolutional origin. The caspase-independent pathway is regarded as an older, whereas the caspase-dependent—as more advanced. In our study we address the question of whether there are any characteristic differences in the activation and course of PCD in phylogenetically and morphologically distinguished brain structures after transient focal ischemia. Using Western blot, we studied changes in expression of caspases: 3, 8, 9, and AIF in the frontoparietal neocortex, archicortex (CA1 and CA2 sectors of the hippocampus) and striatum, during reperfusion after 1 h occlusion of the middle cerebral artery. The caspase and AIF expression were differentiated between the studied structures. The activation of only the caspase-dependent pathway was observed in the neocortex. In the archicortex and striatum both caspase-dependent and caspase-independent pathways were activated, although in the latter the extrinsic apoptotic pathway was not activated. In summary, it is conceivable that structures of different evolutionary origin undergo cell-death processes with the participation of phylogenetically distinguished mechanisms. The previously reported unequal susceptibility to ischemia may co-exist with activation of different cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashe PC, Berry MD (2003) Apoptotic signaling cascades. Prog Neuropsychopharmacol Biol Psychiatry 27:199–214

    Article  PubMed  CAS  Google Scholar 

  • Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    PubMed  CAS  Google Scholar 

  • Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134

    PubMed  CAS  Google Scholar 

  • Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222

    Article  PubMed  CAS  Google Scholar 

  • Carloni S, Carnevali A, Cimino M, Balduini W (2007) Extended role of necrotic cell death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. Neurobiol Dis 27:354–361

    Article  PubMed  CAS  Google Scholar 

  • Castellanos M, Sobrino T, Castillo J (2006) Evolving paradigms for neuroprotection: molecular identification of ischemic penumbra. Cerebrovasc Dis 21(Suppl 2):71–79

    Article  PubMed  Google Scholar 

  • Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18:4914–4928

    PubMed  CAS  Google Scholar 

  • Cho S, Liu D, Gonzales C, Zaleska MM, Wood A (2003) Temporal assessment of caspase activation in experimental models of focal and global ischemia. Brain Res 982:146–155

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517

    Article  PubMed  CAS  Google Scholar 

  • Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25:10262–10272

    Article  PubMed  CAS  Google Scholar 

  • Datson NA, Meijer L, Steenbergen PJ, Morsink MC, van der Laan S, Meijer OC, de Kloet ER (2004) Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. Eur J NeuroSci 20:2541–2554

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G (2000a) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  PubMed  CAS  Google Scholar 

  • Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000b) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739

    PubMed  CAS  Google Scholar 

  • Davoli MA, Fourtounis J, Tam J, Xanthoudakis S, Nicholson D, Robertson GS, Ng GY, Xu D (2002) Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience 115:125–136

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  • Endo H, Saito A, Chan PH (2007) Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem Soc Trans 35:1649

    Article  CAS  Google Scholar 

  • Ferrer I (2006) Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis 21(Suppl 2):9–20

    Article  PubMed  Google Scholar 

  • Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    PubMed  Google Scholar 

  • Ferrer I, Friguls B, Dalfo E, Justicia C, Planas AM (2003) Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol Appl Neurobiol 29:472–481

    Article  PubMed  CAS  Google Scholar 

  • Fisher M (1997) Characterizing the target of acute stroke therapy. Stroke 28:866–872

    PubMed  CAS  Google Scholar 

  • Ginsberg MD (2003) Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 thomas willis lecture. Stroke 34:214–223

    Article  PubMed  Google Scholar 

  • Ginsberg SD, Che S (2005) Expression profile analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons. J Comp Neurol 487:107–118

    Article  PubMed  CAS  Google Scholar 

  • Harrison DC, Medhurst AD, Bond BC, Campbell CA, Davis RP, Philpott KL (2000) The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia–caspase-3 as a case study. Brain Res Mol Brain Res 75:143–149

    Article  PubMed  CAS  Google Scholar 

  • Harrison DC, Davis RP, Bond BC, Campbell CA, James MF, Parsons AA, Philpott KL (2001) Caspase mRNA expression in a rat model of focal cerebral ischemia. Brain Res Mol Brain Res 89:133–146

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G (2001) Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain 124:20–29

    Article  PubMed  CAS  Google Scholar 

  • Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26:1057–1083

    Article  PubMed  Google Scholar 

  • Joshi CN, Jain SK, Murthy PS (2004) An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Brain Res Protoc 13:11–17

    Article  PubMed  CAS  Google Scholar 

  • Kohler C, Orrenius S, Zhivotovsky B (2002) Evaluation of caspase activity in apoptotic cells. J Immunol Methods 265:97–110

    Article  PubMed  CAS  Google Scholar 

  • Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8

    Google Scholar 

  • Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 96:5752–5757

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA, Penninger J, Kroemer G (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6:516–524

    Article  PubMed  CAS  Google Scholar 

  • Malagelada C, Xifro X, Minano A, Sabria J, Rodriguez-Alvarez J (2005) Contribution of caspase-mediated apoptosis to the cell death caused by oxygen-glucose deprivation in cortical cell cultures. Neurobiol Dis 20:27–37

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Anderson SA, Rubenstein JL (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  CAS  Google Scholar 

  • Martinez G, Musumeci G, Loreto C, Carnazza ML (2007) Immunohistochemical changes in vulnerable rat brain regions after reversible global brain ischaemia. J Mol Histol 38:295–302

    Article  PubMed  CAS  Google Scholar 

  • Medina L, Brox A, Legaz I, Garcia-Lopez M, Puelles L (2005) Expression patterns of developmental regulatory genes show comparable divisions in the telencephalon of xenopus and mouse: Insights into the evolution of the forebrain. Brain Res Bull 66:297–302

    Article  PubMed  CAS  Google Scholar 

  • Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    Article  PubMed  CAS  Google Scholar 

  • Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    PubMed  CAS  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Newrzella D, Pahlavan PS, Kruger C, Boehm C, Sorgenfrei O, Schrock H, Eisenhardt G, Bischoff N, Vogt G, Wafzig O, Rossner M, Maurer MH, Hiemisch H, Bach A, Kuschinsky W, Schneider A (2007) The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia. BMC Genomics 8:370

    Article  PubMed  Google Scholar 

  • Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  • Oliver L, Vallette FM (2005) The role of caspases in cell death and differentiation. Drug Resist Updat163-170

  • Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL (1999) Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 64:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466

    Article  PubMed  Google Scholar 

  • Puelles L (2001) Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philos Trans R Soc Lond B Biol Sci 356:1583–1598

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Medina L (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res Bull 57:243–255

    Article  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes dlx-2, emx-1, nkx-2.1, pax-6, and tbr-1. J Comp Neurol 424:409–438

    Article  PubMed  CAS  Google Scholar 

  • Rossner MJ, Hirrlinger J, Wichert SP, Boehm C, Newrzella D, Hiemisch H, Eisenhardt G, Stuenkel C, von Ahsen O, Nave KA (2006) Global transcriptome analysis of genetically identified neurons in the adult cortex. J Neurosci 26:9956–9966

    Article  PubMed  CAS  Google Scholar 

  • Ruan YW, Ling GY, Zhang JL, Xu ZC (2003) Apoptosis in the adult striatum after transient forebrain ischemia and the effects of ischemic severity. Brain Res 982:228–240

    Article  PubMed  CAS  Google Scholar 

  • Rymar VV, Sasseville R, Luk KC, Sadikot AF (2004) Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 469:325–339

    Article  PubMed  CAS  Google Scholar 

  • Smrčka M, Otevřel F, Kuchtičkova Š, Horkŷ M, Juráň V, Duba M, Grateroli I (2001) Experimental model of reversible focal ischemia in the rat. Scr Med (Brno) 74:391–398

    Google Scholar 

  • Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1:17–25

    Article  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Torres-Munoz JE, Van Waveren C, Keegan MG, Bookman RJ, Petito CK (2004) Gene expression profiles in microdissected neurons from human hippocampal subregions. Brain Res Mol Brain Res 127:105–114

    Article  PubMed  CAS  Google Scholar 

  • Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44:85–95

    PubMed  CAS  Google Scholar 

  • Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T (2004) Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 35:2189–2194

    Article  PubMed  Google Scholar 

  • Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci 19:5932–5941

    PubMed  CAS  Google Scholar 

  • Woitzik J, Lassel E, Hecht N, Schneider UC, Schroeck H, Vajkoczy P, Graf R (2009) Ischemia independent lesion evolution during focal stroke in rats. Exp Neurol 218:41–46

    Article  PubMed  Google Scholar 

  • Zhang C, Siman R, Xu YA, Mills AM, Frederick JR, Neumar RW (2002) Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia. Neurobiol Dis 10:289–305

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Yin W, Chen J (2004) Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 26:835–845

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from the Polish State Committee of Scientific Research grant no: W-83. The technical assistance of Mrs. S. Scislowska and Mr. T. Alexander is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Kowiański.

Additional information

Grażyna Lietzau and Przemysław Kowiański equally contributed to this work.

Post-ischemic cell death mechanisms are differentiated in distinct brain regions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lietzau, G., Kowiański, P., Karwacki, Z. et al. The molecular mechanisms of cell death in the course of transient ischemia are differentiated in evolutionary distinguished brain structures. Metab Brain Dis 24, 507–523 (2009). https://doi.org/10.1007/s11011-009-9149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9149-2

Keywords

Navigation