Skip to main content
Log in

Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

N-acetylaspartic acid (NAA) is the biochemical hallmark of Canavan Disease, an inherited metabolic disease caused by deficiency of aspartoacylase activity. NAA is an immediate precursor for the enzyme-mediated biosynthesis of N-acetylaspartylglutamic acid (NAAG), whose concentration is also increased in urine and cerebrospinal fluid of patients affected by CD. This neurodegenerative disorder is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether intracerebroventricular administration of NAA or NAAG elicits oxidative stress in cerebral cortex of 30-day-old rats. NAA significantly reduced total radical-trapping antioxidant potential, catalase and glucose 6-phosphate dehydrogenase activities, whereas protein carbonyl content and superoxide dismutase activity were significantly enhanced. Lipid peroxidation indices and glutathione peroxidase activity were not affected by NAA. In contrast, NAAG did not alter any of the oxidative stress parameters tested. Our results indicate that intracerebroventricular administration of NAA impairs antioxidant defenses and induces oxidative damage to proteins, which could be involved in the neurotoxicity of NAA accumulation in CD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Adachi M, Torii J, Schneck L, Volk BW (1972) Electron microscopy and enzyme histochemical studies of the cerebellum in spongy degeneration (van Bogaert and Bertrand type). Acta Neuropathologica (Berl) 20:22

    Article  CAS  Google Scholar 

  • Akimitsu T, Kurisu K, Hanaya R, Iida K, Kiura Y, Arita K, Matsubayashi H, Ishihara K, Kitada K, Serikawa T, Sasa M (2000) Epileptic seizures induced by N-aspartate in rats: in vivo and in vitro studies. Brain Res 861:143–150

    Article  PubMed  CAS  Google Scholar 

  • Arun P, Madhavarao CN, Moffett JR, Namboodiri AMA (2006) Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators. J Neurochem 98:2034–2042

    Article  PubMed  CAS  Google Scholar 

  • Baslow MH (2002) Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system—an analytical review. Neurochem Int 40:295–300

    Article  PubMed  CAS  Google Scholar 

  • Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28(6):941–953

    Article  PubMed  CAS  Google Scholar 

  • Baslow MH, Guilfoyle DN (2006) Functions of N-acetylaspartate and N-acetylaspartylglutamate in brain: evidence of a role in maintenance of higher brain integrative activities of information processing and cognition. Adv Exp Med Biol 576:95–112

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A (2001) Aspartoacylase deficiency (Canavan disease). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 5799–5805

    Google Scholar 

  • Bruce AJ, Baudry M (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18:993–100

    Article  PubMed  CAS  Google Scholar 

  • Bubeníková-Valesová V, Balcar V, Tejkalová H, Langmeier M, St’astny F (2006) Neonatal administration of N-acetyl-L-aspartyl-L-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats. Neurochem Int 48:515–522

    PubMed  Google Scholar 

  • Burlina AP, Ferrari V, Divry P, Gradoeska W, Jakobs C, Bennet MJ, Sewell AC, Dionisi-Vici C, Burlina AB (1999) N-acetylaspartylglutamate in Canavan disease: an adverse effector? Eur J Pediatr 158:406–409

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen R (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745

    Article  PubMed  CAS  Google Scholar 

  • Driver AS, Kodavanti PRS, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  PubMed  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy SF, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  • Gehl LM, Saab OH, Bzdega T, Wroblewska B, Neale JH (2004) Biosynthesis of NAAG by an enzyme-mediated process in rat central nervous system neurons and glia. J Neurochem 90:989–997

    Article  PubMed  CAS  Google Scholar 

  • Gordon N (2000) Canavan disease: a review of recent developments. Eur J of Paediatr Neurol 5:65–69

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press Inc., Oxford, pp 187–267

    Google Scholar 

  • Hashida K, Sakakura Y, Makino N (2002) Kinetic studies on the hydrogen peroxide elimination by cultured PC12 cells. Biochim Biophys Acta 1572:85–90

    PubMed  CAS  Google Scholar 

  • Janson CG, McPhee SWJ, Francis J, Shera D, Assadi M, Freese A, Hurh P, Haselgrove J, Wang DJ, Bilaniuk L, Leone P (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37:209–221

    Article  PubMed  CAS  Google Scholar 

  • Kirmani BF, Jacobowitz DM, Kallarakal AT, Namboodiri MAA (2002) Aspartoacylase is restricted primarily to myelin synthesizing cells in the CNS: therapeutic implications for Canava disease. Mol Brain Res 107:176–182

    Article  PubMed  CAS  Google Scholar 

  • Kitada K, Akimitsu T, Shigematsu Y, Kondo A, Maihara T, Yokoi N, Kuramoto T, Sasa M, Serikawa T (2000) Accumulation of N-acetylaspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem 74(6):2512–2519

    Article  PubMed  CAS  Google Scholar 

  • Kletzien RF, Harris PKW, Foellmi LA (1994) Glucose 6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients and oxidant stress. FASEB J 8:174–181

    PubMed  CAS  Google Scholar 

  • Krawczyk H, Gradowska W (2003) Characterization of the 1H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease. J Pharm Biomed Anal 31:455–463

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Mattan NS, de Vellis J (2006) Canavan disease: a white matter disorder. Ment Retard Dev Disabil Res Rev 12:157–65

    Article  PubMed  Google Scholar 

  • Leong SF, Clark JB (1984) Regional enzyme development in rat brain, Enzymes associated with glucose utilization. Biochem J 218:131–138

    PubMed  CAS  Google Scholar 

  • Liang LP, Patel M (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(−/+) mice. Free Radic Biol Med 36:542–554

    Article  PubMed  CAS  Google Scholar 

  • Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570

    Article  PubMed  CAS  Google Scholar 

  • Lissi E, Caceres T, Videla LA (1986) Visible chemiluminescence from rat brain homogenates undergoing autoxidation I. Effect of additives and products accumulation. Free Radic Biol Med 2:63–69

    CAS  Google Scholar 

  • Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2, 2′-azo-bis-(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  PubMed  CAS  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158

    Article  PubMed  CAS  Google Scholar 

  • Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Lewis-Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Madhavarao CN, Arun P, Moffett JR, Szucs S, Surendran S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MAA (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. PNAS 102:5221–5226

    Article  PubMed  CAS  Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 243–247

    Google Scholar 

  • Matalon R, Michals-Matalon K (2000) Spongy degeneration of the brain, Canavan disease: biochemical and molecular findings. Front Biosci 5:d307–311

    Article  PubMed  CAS  Google Scholar 

  • Mavelli I, Rigo A, Federico R, Ciriolo MR, Rotilio G (1982) Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem J 204:535–540

    PubMed  CAS  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA (2007) N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    Article  PubMed  CAS  Google Scholar 

  • Namboodiri AMA, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, Moffett JR, Madhavarao CN (2006) Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol 252:216–223

    Article  PubMed  CAS  Google Scholar 

  • Neale JH, Bezdega T, Wroblewska B (2000) N-acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 75(2):443–452

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2004) The rat brain in stereotaxic coordinates. Elsevier, New York

    Google Scholar 

  • Pederzolli CD, Mescka CP, Scapin F, Rockenbach FJ, Sgaravatti AM, Sgarbi MB, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS (2007) N-acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 25(5):317–324

    Article  PubMed  CAS  Google Scholar 

  • Pliss L, FitzGibbon T, Balcar VJ, St’astn‎y F (2000) Neurotoxicity of NAAG in vivo is sensitive to NMDA antagonists and mGluR‎ II ligands. Neuroreport 11(16):3651–3654

    Article  PubMed  CAS  Google Scholar 

  • Pliss L, Jezová D, Mares V, Balcar VJ, St’astny F (2002) N-Acetyl-L-aspartyl-L-glutamate changes functional and structural properties of rat blood-brain barrier. Neurosci Let 317:85–88

    Article  CAS  Google Scholar 

  • Pliss L, Balcar VJ, Bubeníková V, Pokorny J, FitzGibbon T, St’astny F (2003) Morphology and ultra-structure of rat hippocampal formation after i.c.v. administration of N-acetyl-L-aspartyl-L-glutamate. Neuroscience 122:93–101

    Article  PubMed  CAS  Google Scholar 

  • Pouwels PJ, Frahm J (1997) Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS. NMR Biomed 10(2):73–78

    Article  PubMed  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Meth. Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  • Röhrdanz E, Obertrifter B, Ohler S, Tran-Thi Q, Kahl R (2000) Influence of Adriamycin and paraquat on antioxidant enzyme expression in primary rat hepatocytes. Arch Toxicol 74:231–237

    Article  PubMed  Google Scholar 

  • Rojo AI, Salinas M, Martín D, Perona R, Cuadrado A (2004) Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and Nuclear Factor-kB. J Neurosci 24(33):7324–7334

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SJ, Megow D, Raupach A, Victorov IV, Dirnagl U (1995) Age-related changes of oxygen free radical production in the rat brain slice after hypoxia: on-line measurement using enhanced chemiluminescence. Brain Res 703:227–230

    Article  PubMed  CAS  Google Scholar 

  • Shave E, Pliss L, Lawrance ML, FitzGibbon T, St’astny F, Balcar VJ (2001) Regional distribution and pharmacological characteristics of [3H]N-acetyl-aspartyl-glutamate (NAAG) binding sites in rat brain. Neurochem Int 38:53–62

    Article  PubMed  CAS  Google Scholar 

  • Skiranth SG, Chandrashekar HS, Nagarajan K, Jayakumar PN (2007) Restricted diffusion in Canavan Disease. Childs Nerv Syst 23:465–468

    Article  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free-radical mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  • Thomas AG, Vornov JJ, Olkowski JL, Merion AT, Slusher BS (2000) N-acetylated α-linked acidic dipeptidase converts N-acetylaspartylglutamate from a neuroprotectant to a neurotoxin. JPET 295:16–22

    CAS  Google Scholar 

  • Traeger EC, Rapin I (1998) The clinical course of Canavan disease. Pediatric Neurol 18(3):207–212

    Article  CAS  Google Scholar 

  • Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative stress and excitotoxic neurodegeneration? Trends Pharmacol Sci 19:328–334

    Article  PubMed  CAS  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Meth Enzymol 77:325–332

    Article  PubMed  CAS  Google Scholar 

  • Wilson DO, Johnson P (2000) Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver. J Appl Physiol 88:1791–1796

    PubMed  CAS  Google Scholar 

  • Yan HD, Ishihara K, Serikawa T, Sasa M (2003) Activation by N-acetyl-L-aspartate of acutely dissociated hippocampal neurons in rats via metabotropic glutamate receptors. Epilepsia 44(9):1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Yoo HY, Chang MS, Rho HM (1999) The activation of the rat cooper/zinc superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide responsive element and by paraquat and heat shock through the same heat shock element. J Biol Chem 274(34):23887–23892

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Ramadan E, Cappiello M, Wroblewska B, Bzdega T, Neale JH (2001) NAAG inhibits KCl-induced [3H]-GABA release via mGluR3, cAMP, PKA and L-type calcium conductance. Eur J Neurosci 13:340–346

    Article  PubMed  CAS  Google Scholar 

  • Zielke HR, Zielke CL, Baab PJ, Collins RM (2002) Large neutral acids auto exchange when infused by microdialysis into the rat brain: implication for maple syrup urine disease and phenylketonuria. Neurochem Int 40:347–354

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants from Programa de Núcleos de Excelência (PRONEX), CAPES, Brazilian National Research Council (CNPq), PROPESQ/UFRGS, PIC/UFCSPA and FINEP — Rede Instituto Brasileiro de Neurociência (IBN-Net) #01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos S. Dutra-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pederzolli, C.D., Rockenbach, F.J., Zanin, F.R. et al. Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats. Metab Brain Dis 24, 283–298 (2009). https://doi.org/10.1007/s11011-009-9137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9137-6

Keywords

Navigation