Skip to main content
Log in

Augmented cerebellar lactate in copper deficient rat pups originates from both blood and cerebellum

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Copper (Cu) is essential for proper brain development, particularly the cerebellum, and functions as a cofactor for enzymes including mitochondrial cytochrome c oxidase (CCO). Cu deficiency severely limits CCO activity. Augmented lactate in brain of Cu deficient (Cu-) humans and cerebella of Cu- rats is though to originate from impaired mitochondria. However, brain lactate may also originate from elevated blood lactate. The hypothesis that cerebellar lactate originates from elevated blood lactate in Cu- rat pups was tested. Analysis of Cu- and Cu adequate (Cu+) rat pups (experiment I) revealed blood lactate was elevated in Cu- rat pups and cerebellar lactate levels were closely correlated to blood lactate concentration. A second rat experiment (experiment II) assessed Cu- cerebellar lactate without the confounding factor of elevated blood lactate. Blood lactate levels of Cu- rat pups in experiment II were equal to those of controls; however, Cu- cerebellar lactate was still elevated, suggesting mitochondrial impairment by Cu deficiency. Treatment of rat pups with dichloroacetate (DCA), an activator of mitochondrial pyruvate dehydrogenase complex (PDC), lowered Cu- cerebellar lactate to control levels suggesting PDC inhibition is a site of mitochondrial impairment in Cu- cerebella. Results suggest Cu- cerebellar lactate originates from blood and cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cohen E, Elvehjem CA (1934) The relation of iron and copper to cytochrome and oxidase content of animal tissues. J Biol Chem 107:97–105

    CAS  Google Scholar 

  • Cremer JE, Cunningham VJ, Pardridge WM, Braun LD, Oldendorf WH (1979) Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem 33:439–445

    Article  PubMed  CAS  Google Scholar 

  • Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwright E (1972) Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 50:188–201

    PubMed  CAS  Google Scholar 

  • Donsante A, Tang J, Godwin SC, Holmes CS, Goldstein DS, Bassuk A, Kaler SG (2007) Differences in ATP7A gene expression underlie intrafamilial variability in Menkes disease/occipital horn syndrome. J Med Genet 44:492–497

    Article  PubMed  CAS  Google Scholar 

  • El Meskini R, Crabtree KL, Cline LB, Mains RE, Eipper BA, Ronnett GV (2007) ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol Cell Neurosci 34:409–421

    Article  PubMed  CAS  Google Scholar 

  • Everson GJ, Tsai HC, Wang TI (1967) Copper deficiency in the guinea pig. J Nutr 93:533–540

    PubMed  CAS  Google Scholar 

  • Gybina AA, Prohaska JR (2003) Increased rat brain cytochrome c correlates with degree of perinatal copper deficiency rather than apoptosis. J Nutr 133:3361–3368

    PubMed  CAS  Google Scholar 

  • Gybina AA, Prohaska JR (2006) Variable response of selected cuproproteins in rat choroid plexus and cerebellum following perinatal copper deficiency. Genes and Nutrition 1:51–60

    Article  PubMed  CAS  Google Scholar 

  • Gybina AA, Prohaska JR (2008a) Fructose 2, 6 bisphosphate is lower in copper deficient rat cerebellum despite higher content of phosporylated AMP-activated protein kinase. Exp Biol Med 233:1262–1270

    Article  CAS  Google Scholar 

  • Gybina AA, Prohaska JR (2008b) Copper deficiency results in AMP-activated protein kinase activation and acetylCoA carboxylase phosphorylation in rat cerebellum. Brain Res 1204:69–76

    Article  PubMed  CAS  Google Scholar 

  • Henderson GN, Curry SH, Derendorf H, Wright EC, Stacpoole PW (1997) Pharmacokinetics of dichloroacetate in adult patients with lactic acidosis. J Clin Pharmacol 37:416–425

    PubMed  CAS  Google Scholar 

  • Kodama H, Murata Y, Kobayashi M (1999) Clinical manifestations and treatment of Menkes disease and its variants. Pediatr Int 41:423–429

    Article  PubMed  CAS  Google Scholar 

  • Kuschinsky W, Suda S, Sokoloff L (1981) Local cerebral glucose utilization and blood flow during metabolic acidosis. Am J Physiol 241:H772–777

    PubMed  CAS  Google Scholar 

  • LaManna JC, Harrington JF, Vendel LM, Abi-Saleh K, Lust WD, Harik SI (1993) Regional blood-brain lactate influx. Brain Res 614:164–170

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, Inc., New York

    Google Scholar 

  • Loyola MA, Dodson WE (1981) Metabolic consequences of trichopoliodystrophy. J Pediatr 98:588–591

    Article  PubMed  CAS  Google Scholar 

  • Lust WD, Pundik S, Zechel J, Zhou Y, Buczek M, Selman WR (2003) Changing metabolic and energy profiles in fetal, neonatal, and adult rat brain. Metab Brain Dis 18:195–206

    Article  PubMed  CAS  Google Scholar 

  • Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  • Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH (1962) A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics 29:764–779

    PubMed  CAS  Google Scholar 

  • Mercer JF (1998) Menkes syndrome and animal models. Am J Clin Nutr 67:1022S–1028S

    PubMed  CAS  Google Scholar 

  • Miller AL, Kiney CA, Staton DM (1984) Effects of lactate on glucose metabolism of developing rat brain. Brain Res 316:33–40

    PubMed  CAS  Google Scholar 

  • Miller AL, Hatch JP, Prihoda TJ (1990) Dichloroacetate increases glucose use and decreases lactate in developing rat brain. Metab Brain Dis 5:195–204

    Article  PubMed  CAS  Google Scholar 

  • Munakata M, Sakamoto O, Kitamura T, Ishitobi M, Yokoyama H, Haginoya K, Togashi N, Tamura H, Higano S, Takahashi S, Ohura T, Kobayashi Y, Onuma A, Iinuma K (2005) The effects of copper-histidine therapy on brain metabolism in a patient with Menkes disease: a proton magnetic resonance spectroscopic study. Brain Dev 27:297–300

    Article  PubMed  Google Scholar 

  • Nehlig A (1999) Age-dependent pathways of brain energy metabolism: the suckling rat, a natural model of the ketogenic diet. Epilepsy Res 37:211–221

    Article  PubMed  CAS  Google Scholar 

  • Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia. Stroke. 5:48–53

    PubMed  CAS  Google Scholar 

  • Oldendorf WH (1971) Blood brain barrier permeability to lactate. Eur Neurol 6:49–55

    Article  PubMed  CAS  Google Scholar 

  • Penland JG, Prohaska JR (2004) Abnormal motor function persists following recovery from perinatal copper deficiency in rats. J. Nutr. 134:1984–1988

    PubMed  CAS  Google Scholar 

  • Prohaska JR (1981) Changes in brain enzymes accompanying deficiencies of the trace elements, copper, selenium, or zinc. In: Howel J McC, Gawthorne JM, White CL (eds) Trace element metabolism in Man and animals (TEMA-4). Australian Academy of Science, Canberra, pp 275–282

    Google Scholar 

  • Prohaska JR (2006) Copper. In: Bowman BA, Russell RM (eds) Present knowledge in nutrition Vol. 1. International Life Sciences Institute, Washington, DC, pp 458–470

    Google Scholar 

  • Prohaska JR, Brokate B (2001) Dietary copper deficiency alters protein levels of rat dopamine beta-monooxygenase and tyrosine monooxygenase. Exp. Biol. Med. 226:199–207

    CAS  Google Scholar 

  • Prohaska JR, Wells WW (1974) Copper deficiency in the developing rat brain: a possible model for Menkes' steely-hair disease. J. Neurochem. 23:91–98

    Article  PubMed  CAS  Google Scholar 

  • Prohaska JR, Wells WW (1975) Copper deficiency in the developing rat brain: evidence for abnormal mitochondria. J. Neurochem. 25:221–228

    Article  PubMed  CAS  Google Scholar 

  • Prohaska JR, Broderius M, Brokate B (2003) Metallochaperone for Cu, Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats. Arch Biochem Biophys 417:227–234

    Article  PubMed  CAS  Google Scholar 

  • Rizzo C, Bertini E, Piemonte F, Leuzzi V, Sabetta G, Federici G, Luchetti A, Dionisi-Vici C (2000) Oxidative abnormalities in Menkes disease. J. Inherit. Metab. Dis. 23:349–351

    Article  PubMed  CAS  Google Scholar 

  • Rovetto MJ, Lamberton WF, Neely JR (1975) Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37:742–751

    PubMed  CAS  Google Scholar 

  • Rusinko N, Prohaska JR (1985) Adenine nucleotide and lactate levels in organs from copper-deficient mice and brindled mice. J. Nutr. 115:936–943

    PubMed  CAS  Google Scholar 

  • Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 284:E855–862

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hauhart RE, Schiro JA (1983) Lactate reverses insulin-induced hypoglycemic stupor in suckling-weanling mice: biochemical correlates in blood, liver, and brain. J. Cereb. Blood Flow Metab. 3:498–506

    PubMed  CAS  Google Scholar 

  • West EC, Prohaska JR (2004) Cu, Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice. Exp. Biol. Med. 229:756–764

    CAS  Google Scholar 

  • Zimmerman AW, Matthieu JM, Quarles RH, Brady RO, Hsu JM (1976) Hypomyelination in copper-deficient rats. Prenatal and postnatal copper replacement. Arch Neurol 33:111–119

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Margaret Boderius and Joshua Pyatskowit for their excellent technical assistance. This research was supported by NIH HD-039708 and the University of Minnesota Doctoral Dissertation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Prohaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gybina, A.A., Prohaska, J.R. Augmented cerebellar lactate in copper deficient rat pups originates from both blood and cerebellum. Metab Brain Dis 24, 299–310 (2009). https://doi.org/10.1007/s11011-009-9135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9135-8

Keywords

Navigation