The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression

Abstract

Despite extensive research, the current theories on serotonergic dysfunctions and cortisol hypersecretion do not provide sufficient explanations for the nature of depression. Rational treatments aimed at causal factors of depression are not available yet. With the currently available antidepressant drugs, which mainly target serotonin, less than two thirds of depressed patients achieve remission. There is now evidence that inflammatory and neurodegenerative (I&ND) processes play an important role in depression and that enhanced neurodegeneration in depression may–at least partly–be caused by inflammatory processes. Multiple inflammatory-cytokines, oxygen radical damage, tryptophan catabolites–and neurodegenerative biomarkers have been established in patients with depression and these findings are corroborated by animal models of depression. A number of vulnerability factors may predispose towards depression by enhancing inflammatory reactions, e.g. lower peptidase activities (dipeptidyl-peptidase IV, DPP IV), lower omega-3 polyunsaturated levels and an increased gut permeability (leaky gut). The cytokine hypothesis considers that external, e.g. psychosocial stressors, and internal stressors, e.g. organic inflammatory disorders or conditions, such as the postpartum period, may trigger depression via inflammatory processes. Most if not all antidepressants have specific anti-inflammatory effects, while restoration of decreased neurogenesis, which may be induced by inflammatory processes, may be related to the therapeutic efficacy of antidepressant treatments. Future research to disentangle the complex etiology of depression calls for a powerful paradigm shift, i.e. by means of a high throughput-high quality screening, including functional genetics and genotyping microarrays; established and novel animal and ex vivo–in vitro models for depression, such as new transgenic mouse models and endophenotype-based animal models, specific cell lines, in vivo and ex vivo electroporation, and organotypic brain slice culture models. This screening will allow to: 1) discover new I&ND biomarkers, both at the level of gene expression and the phenotype; and elucidate the underlying molecular I&ND pathways causing depression; and 2) identify new therapeutic targets in the I&ND pathways; develop new anti-I&ND drugs for these targets; select existing anti-I&ND drugs or substances that could augment the efficacy of antidepressants; and predict therapeutic response by genetic I&ND profiles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Amodio P, De Toni EN, Cavalletto L, Mapelli D, Bernardinello E, Del Piccolo F, Bergamelli C, Costanzo R, Bergamaschi F, Poma SZ, Chemello L, Gatta A, Perini G (2005) Mood, cognition and EEG changes during interferon (αIFN) treatment for chronic hepatitis C. J. Affect. Disord. 84(1):93–98

    PubMed  CAS  Google Scholar 

  2. Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry 10(4):345–352

    PubMed  CAS  Google Scholar 

  3. Anisman H, Kokkinidis L, Merali Z (2002) Further evidence for the depressive effects of cytokines: anhedonia and neurochemical changes. Brain Beh. Immun. 16(5):544–556 Review

    CAS  Google Scholar 

  4. Anisman H, Merali Z, Poulter MO, Hayley S (2005) Cytokines as a precipitant of depressive illness: animal and human studies. Curr. Pharm. Design 11(8):963–972

    CAS  Google Scholar 

  5. Anisman H, Poulter MO, Gandhi R, Merali Z, Hayley S (2007) Interferon-alpha effects are exaggerated when administered on a psychosocial stressor backdrop: cytokine, corticosterone and brain monoamine variations. J. Neuroimmunol. 186(1–2):45–53

    PubMed  CAS  Google Scholar 

  6. Anttila S, Huuhka K, Huuhka M, Rontu R, Hurme M, Leinonen E, Lehtimaki T (2007) Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J. Neural. Transm. 114(8):1065–1068

    PubMed  CAS  Google Scholar 

  7. Babcock TA, Carlin JM (2000) Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 12(6):588–594

    PubMed  CAS  Google Scholar 

  8. Banerjee A, Jain G, Grover S, Singh J (2007) Mania associated with interferon. J. Postgraduate Med. 53(2):150

    CAS  Google Scholar 

  9. Bazan NG, Marcheselli VL, Cole-Edwards K (2005) Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann. NY Acad. Sci. 1053:137–147 Review

    PubMed  CAS  Google Scholar 

  10. Beck RD Jr., Wasserfull C, Ha GK, Cushman JD, Huang Z, Atkinson MA, Petitto JM (2005) Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Res. 1041:223–230

    PubMed  CAS  Google Scholar 

  11. Beltz BS, Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod crustacean brain. Arth. Struct. Dev. 32:39–60

    Google Scholar 

  12. Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci. Lett. 145(2):154–158

    Google Scholar 

  13. Benazzi F (2007a) Bipolar II Disorder : Epidemiology, Diagnosis and Management. CNS Drugs. 21(9):727–740

    PubMed  CAS  Google Scholar 

  14. Benazzi F (2007b) Is there a continuity between bipolar and depressive disorders? Psychoth. Psychosom. 76(2):70–76

    Google Scholar 

  15. Berlim MT, Turecki G (2007) Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can. J. Psychiatry 52(1):46–54

    PubMed  Google Scholar 

  16. Bjornebekk A, Mathe AA, Brene S (2005) The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int. J. Neuropsychopharmacol. 8(3):357–368

    PubMed  CAS  Google Scholar 

  17. Bjørnebekk A, Mathé AA, Gruber SH, Brené S (2007) Social isolation increases number of newly proliferated cells in hippocampus in female flinders sensitive line rats. Hippocampus. 17(12):1193–1120

    PubMed  Google Scholar 

  18. Bjørnebekk A, Mathé AA, Gruber SH, Brené S (2008) Housing conditions modulate escitalopram effects on antidepressive-like behaviour and brain neurochemistry. Int. J. Neuropsychopharmacol. 23:1–13

    Google Scholar 

  19. Bonaccorso S, Puzella A, Marino V, Pasquini M, Biondi M, Artini M, Almerighi C, Levrero M, Egyed B, Bosmans E, Meltzer HY, Maes M (2001) Immunotherapy with interferon-alpha in patients affected by chronic hepatitis C induces an intercorrelated stimulation of the cytokine network and an increase in depressive and anxiety symptoms. Psychiatry Res. 105(1–2):45–55

    PubMed  CAS  Google Scholar 

  20. Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M (2002a) Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J. Affect. Disord. 72(3):237–241

    PubMed  CAS  Google Scholar 

  21. Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M, Almerighi C, Verkerk R, Meltzer H, Maes M (2002b) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J. Clin. Psychopharmacol. 22(1):86–90

    PubMed  CAS  Google Scholar 

  22. Bremner JD, Narayan M (1998) The effects of stress on memory and the hippocampus throughout the life cycle: implications for childhood development and aging. Developm. Psychopathol. 10(4):871–885

    CAS  Google Scholar 

  23. Brown ES, Rush AJ, McEwen BS (1999) Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacol. 21(4):474–484

    CAS  Google Scholar 

  24. Brown ES, J Woolston D, Frol A, Bobadilla L, Khan DA, Hanczyc M, Rush AJ, Fleckenstein J, Babcock E, Cullum CM (2004) Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol. Psychiatry 55(5):538–545

    PubMed  CAS  Google Scholar 

  25. Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, Wotjak CT, Schweizer M, Dityatev A, Schachner M (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J. Neurosci. 24:1565–1577

    PubMed  CAS  Google Scholar 

  26. Campbell S, MacQueen G (2006) An update on regional brain volume differences associated with mood disorders. Curr. Opin. Psychiatry 19(1):25–33

    PubMed  Google Scholar 

  27. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003) Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol. Psychiatry 54(9):906–914

    PubMed  CAS  Google Scholar 

  28. Carter CJ (2007) Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem. Int. 50(3):461–490

    PubMed  CAS  Google Scholar 

  29. Castanon N, Bluthé RM, Dantzer R (2001) Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat. Psychopharmacol. 154(1):50–60

    CAS  Google Scholar 

  30. Chavez AM, Menconi MJ, Hodin RA, Fink MP (1999) Cytokine-induced intestinal epithelial hyperpermeability: role of nitric oxide. Crit. Care Med. 27(10):2246–2251

    PubMed  CAS  Google Scholar 

  31. Checa N, Canals JM, Alberch J (2000) Developmental regulation of BDNF and NT-3 expression by quinolinic acid in the striatum and its main connections. Exp. Neurology 165(1):118–124

    CAS  Google Scholar 

  32. Chung KK, Dawson TM, Dawson VL (2005) Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol. Biol. (Noisy-le-grand) 51(3):247–254 Review

    CAS  Google Scholar 

  33. Clark E, Hoare C, Tanianis-Hughes J, Carlson GL, Warhurst G (2005) Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterol. 128(5):1258–1267

    CAS  Google Scholar 

  34. Contestabile A (2001) Oxidative stress in neurodegeneration: mechanisms and therapeutic perspectives. Curr. Topics Med. Chemistry 1(6):553–568 Review

    CAS  Google Scholar 

  35. Coti Bertrand P, O'Kusky JR, Innis SM (2006) Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. J. Nutr. 136(6):1570–1575

    PubMed  Google Scholar 

  36. Cowen PJ (2002) Cortisol, serotonin and depression: all stressed out? Brit. J. Psychiatry 180:99–100

    CAS  Google Scholar 

  37. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunol 6(8):844–851

    Google Scholar 

  38. Dinan T (2001) Novel approaches to the treatment of depression by modulating the hypothalamic—pituitary—adrenal axis. Hum. Psychopharmacol. 16(1):89–93

    PubMed  CAS  Google Scholar 

  39. Duman RS (2002) Pathophysiology of depression: the concept of synaptic plasticity. Eur. Psychiatry 17(Suppl 3):306–310

    PubMed  Google Scholar 

  40. Duman RS (2004) Depression: a case of neuronal life and death? Biol. Psychiatry 56(3):140–145

    PubMed  Google Scholar 

  41. Ehninger D, Kempermann G (2006) Paradoxical effects of learning the Morris water maze on adult hippocampal neurogenesis in mice may be explained by a combination of stress and physical activity. Genes Brain Beh. 5(1):29–39

    CAS  Google Scholar 

  42. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc. Nat. Acad. Sci. USA. 100(23):13632–13637

    PubMed  CAS  Google Scholar 

  43. el-Defrawy SR, Boegman RJ, Jhamandas K, Beninger RJ (1986) The neurotoxic actions of quinolinic acid in the central nervous system. Can. J. Physiol. Pharmacol. 64(3):369–375

    PubMed  CAS  Google Scholar 

  44. Fitzgerald P, O'Brien SM, Scully P, Rijkers K, Scott LV, Dinan TG (2006) Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol. Med. 36(1):37–43

    PubMed  Google Scholar 

  45. Forlenza MJ, Miller GE (2006) Increased serum levels of 8-hydroxy-2'-deoxyguanosine in clinical depression. Psychosomatic Med. 68(1):1–7

    CAS  Google Scholar 

  46. Fuchs E, Czeh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur. Neuropsychopharmacol. 5(14 Suppl):S481–490

    Google Scholar 

  47. Garthwaite G, Garthwaite J (1987) Quinolinate mimics neurotoxic actions of N-methyl-D-aspartate in rat cerebellar slices. Neurosci. Lett. 79(1–2):35–39

    PubMed  CAS  Google Scholar 

  48. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation.J. Neurosci. 17(7):2492–2498

    CAS  Google Scholar 

  49. Guillemin GJ, Smith DG, Kerr SJ, Smythe GA, Kapoor V, Armati PJ, Brew BJ (2000) Characterisation of kynurenine pathway metabolism in human astrocytes and implications in neuropathogenesis. Redox Report 5(2–3):108–111

    PubMed  CAS  Google Scholar 

  50. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728

    PubMed  CAS  Google Scholar 

  51. Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatry 12:1079–1088

    PubMed  CAS  Google Scholar 

  52. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97(6):1634–1658 Review

    PubMed  CAS  Google Scholar 

  53. Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, Guerrier S, Boutt E, Peters E, Barnes AP, Parras C, Schuurmans C, Guillemot F, Polleux F (2005) Phosphorylation of neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48(1):45–62

    PubMed  CAS  Google Scholar 

  54. Henn FA, Vollmayr B (2004) Neurogenesis and depression: etiology or epiphenomenon? Biol. Psychiatry 56(3):146–150

    PubMed  Google Scholar 

  55. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115(Pt 5):1249–1273

    PubMed  Google Scholar 

  56. Hibbeln JR (1998) Fish consumption and major depression. Lancet 351(9110):1213

    PubMed  CAS  Google Scholar 

  57. Hibbeln JR (2002) Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J. Affect. Disord. 69(1–3):15–29

    PubMed  CAS  Google Scholar 

  58. Horrobin DF (2001) Phospholipid metabolism and depression: the possible roles of phospholipase A2 and coenzyme A-independent transacylase. Hum. Psychopharmacol. 16(1):45–52

    PubMed  CAS  Google Scholar 

  59. Huang SY, Yang HT, Chiu CC, Pariante CM, Su KP (2006) Omega-3 fatty acids on the forced-swimming test. J. Psychiatr. Res. 42(1):58–63

    PubMed  Google Scholar 

  60. Ishikawa I, Kitamura H, Kimura K, Saito M (2001) Brain interleukin-1 is involved in blood interleukin-6 response to immobilization stress in rats. Jap. J. Veterinary Res. 49(1):19–25

    CAS  Google Scholar 

  61. Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neurosci. 139(3):991–997

    CAS  Google Scholar 

  62. Kempermann G, Neumann H (2003) Microglia: the enemy within? Science 302:1689–1690

    PubMed  CAS  Google Scholar 

  63. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495

    PubMed  CAS  Google Scholar 

  64. Kenis G, Maes M (2002) Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol. 5(4):401–412 Review

    PubMed  CAS  Google Scholar 

  65. Kent S, Bluthé RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol. Sci. 13(1):24–28

    PubMed  CAS  Google Scholar 

  66. Kerr SJ, Armati PJ, Guillemin GJ, Brew BJ (1998) Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12(4):355–363

    PubMed  CAS  Google Scholar 

  67. Khaspekov L, Kida E, Victorov I, Mossakowski MJ (1989) Neurotoxic effect induced by quinolinic acid in dissociated cell culture of mouse hippocampus. J. Neurosci. Res. 22(2):150–157

    PubMed  CAS  Google Scholar 

  68. Kim YK, Myint AM, Lee BH, Han CS, Lee SW, Leonard BE, Steinbusch HW (2004) T-helper types 1, 2, and 3 cytokine interactions in symptomatic manic patients. Psychiatr. Res. 129(3):267–272

    CAS  Google Scholar 

  69. Kim YK, Jung HG, Myint AM, Kim H, Park SH (2007) Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J. Affect. Disord. 104(1–3):91–95

    PubMed  CAS  Google Scholar 

  70. Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT (2008) Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS. Medicine 5(2):e45

    PubMed  Google Scholar 

  71. Koo JW Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Nat. Acad. Sci. USA 105:751–756

    Google Scholar 

  72. Kubera M, Symbirtsev A, Basta-Kaim A, Borycz J, Roman A, Papp M, Claesson M (1996) Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. Pol. J. Pharmacol. 48:503–506

    PubMed  CAS  Google Scholar 

  73. Kubera M, Van Bockstaele D, Maes M (1999) Leukocyte subsets in treatment-resistant major depression. Pol. J. Pharmacol. 51(6):547–549

    PubMed  CAS  Google Scholar 

  74. Kubera M, Lin AH, Kenis G, Bosmans E, van Bockstaele D, Maes M (2001a) Anti-Inflammatory effects of antidepressants through suppression of the interferon-gamma/interleukin-10 production ratio. J. Clin. Psychopharmacol. 21(2):199–206

    PubMed  CAS  Google Scholar 

  75. Kubera M, Maes M, Holan V, Basta-Kaim A, Roman A, Shani J (2001b) Prolonged desipramine treatment increases the production of interleukin-10, an anti-inflammatory cytokine, in C57BL/6 mice subjected to the chronic mild stress model of depression. J. Affect. Disord. 63(1–3):171–178

    PubMed  CAS  Google Scholar 

  76. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J. 19(10):1347–1349

    PubMed  CAS  Google Scholar 

  77. Lacosta S, Merali Z, Anisman H (1999) Behavioral and neurochemical consequences of lipopolysaccharide in mice: anxiogenic-like effects. Brain Res. 818(2):291–303

    PubMed  CAS  Google Scholar 

  78. Lapin IP (2003) Neurokynurenines (NEKY) as common neurochemical links of stress and anxiety. Adv. Exp. Med. Biol. 527:121–125

    PubMed  CAS  Google Scholar 

  79. Lestage J, Verrier D, Palin K, Dantzer R (2002) The enzyme indoleamine 2,3-dioxygenase is induced in the mouse brain in response to peripheral administration of lipopolysaccharide and superantigen. Brain Behav. Immun. 16(5):596–601

    PubMed  CAS  Google Scholar 

  80. Levivier M, Przedborski S (1998) Quinolinic acid-induced lesions of the rat striatum: quantitative autoradiographic binding assessment. Neurol. Res. 20(1):46–56

    PubMed  CAS  Google Scholar 

  81. Lin A, Song C, Kenis G, Bosmans E, De Jongh R, Scharpe S, Maes M (2000) The in vitro immunosuppressive effects of moclobemide in healthy volunteers. J. Affect. Disord. 58(1):69–74

    PubMed  CAS  Google Scholar 

  82. Lin PY, Su KP (2007) A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatr. 68(7):1056–1061

    CAS  Google Scholar 

  83. Machado-Vieira R, Dietrich MO, Leke R, Cereser VH, Zanatto V, Kapczinski F, Souza DO, Portela LV, Gentil V (2007a) Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol. Psychiatry 61(2):142–144

    PubMed  CAS  Google Scholar 

  84. Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva Vargas R, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007b) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci. Lett. 421(1):33–36

    PubMed  CAS  Google Scholar 

  85. Maes M (1993) A review on the acute phase response in major depression. Rev. Neurosci. 4(4):407–416 Review

    PubMed  CAS  Google Scholar 

  86. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Progr. Neuropsychopharmacol. Biol. Psychiatry 19(1):11–38 Review

    CAS  Google Scholar 

  87. Maes M (1999) Major depression and activation of the inflammatory response system. Adv. Exp. Med. Biol. 461:25–46 Review

    PubMed  CAS  Google Scholar 

  88. Maes M, Meltzer HY (1995) The Serotonin Hypothesis of major depression. Psychopharmacology, The Fourth Generation of Progress. In: Bloom F, Kupfer D (Ed) Raven Press, pp 933–944

  89. Maes M, Smith RS (1998) Fatty acids, cytokines, and major depression. Biol. Psychiatr. 43(5):313–314

    CAS  Google Scholar 

  90. Maes M, De Ruyter M, Claes R, Bosma G, Suy E (1987) The cortisol responses to 5-hydroxytryptophan, orally, in depressive inpatients. J. Affect. Disord. 13(1):23–30

    PubMed  CAS  Google Scholar 

  91. Maes M, De Ruyter M, Claes R, Suy E (1988) Sex-related differences in the relationships between self-rated depression and biological markers. J. Affect. Disord. 15(2):119–125

    PubMed  CAS  Google Scholar 

  92. Maes M, Bosmans E, Suy E, Vandervorst C, De Jonckheere C, Raus J (1990) Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiol. 24(3):115–120

    Google Scholar 

  93. Maes M, De Meester I, Vanhoof G, Scharpe S, Bosmans E, Vandervorst C, Verkerk R, Minner B, Suy E, Raus J (1991) Decreased serum dipeptidyl peptidase IV activity in major depression. Biol. Psychiatry 30(6):577–586

    PubMed  CAS  Google Scholar 

  94. Maes M, Bosmans E, Meltzer HY, Scharpe S, Suy E (1993a) Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am. J. Psychiatry 150(8):1189–1193

    PubMed  CAS  Google Scholar 

  95. Maes M, Meltzer HY, Scharpe S, Bosmans E, Suy E, De Meester I, Calabrese J, Cosyns P (1993b) Relationships between lower plasma L-tryptophan levels and immune-inflammatory variables in depression. Psychiatr. Res. 49(2):151–165

    CAS  Google Scholar 

  96. Maes M, Meltzer HY, Scharpé S, Cooreman W, Uyttenbroeck W, Suy E, Vandervorst C, Calabrese J, Raus J, Cosyns P (1993c) Psychomotor retardation, anorexia, weight loss, sleep disturbances, and loss of energy: psychopathological correlates of hyperhaptoglobinemia during major depression. Psychiatr. Res. 47(3):229–241

    CAS  Google Scholar 

  97. Maes M, Scharpe S, Meltzer HY, Cosyns P (1993d) Relationships between increased haptoglobin plasma levels and activation of cell-mediated immunity in depression. Biol. Psychiatry 34(10):690–701

    PubMed  CAS  Google Scholar 

  98. Maes M, Scharpe S, Meltzer HY, Bosmans E, Suy E, Calabrese J, Cosyns P (1993e) Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-drenal axis in severe depression. Psychiatr. Res. 49(1):11–27

    CAS  Google Scholar 

  99. Maes M, Scharpe S, Meltzer H, Okayli G, D'Hondt P, Cosyns P (1994) Increased neopterin and interferon gamma secretion and lower L-tryptophan levels in major depression: further evidence for immune activation in severe depression. Psychiatr. Res. 54:143–160

    CAS  Google Scholar 

  100. Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY (1995a) Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J. Psychiatry Res. 29(2):141–152

    CAS  Google Scholar 

  101. Maes M, Smith R, Scharpe S (1995b) The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinol. 20(2):111–116

    CAS  Google Scholar 

  102. Maes M, Smith R, Christophe A, Cosyns P, Desnyder R, Meltzer H (1996a) Fatty acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids. J. Affect. Disord. 38(1):35–46

    PubMed  CAS  Google Scholar 

  103. Maes M, Wauters A, Verkerk R, Demedts P, Neels H, Van Gastel A, Cosyns P, Scharpe S, Desnyder R (1996b) Lower serum L-tryptophan availability in depression as a marker of a more generalized disorder in protein metabolism. Neuropsychopharmacol. 15(3):243–251

    CAS  Google Scholar 

  104. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997a) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9(11):853–858

    PubMed  CAS  Google Scholar 

  105. Maes M, Calabrese J, Jayathilake K, Meltzer HY (1997b) Effects of subchronic treatment with valproate on L-5-HTP-induced cortisol responses in mania: evidence for increased central serotonergic neurotransmission. Psychiatr. Res. 71(2):67–76

    CAS  Google Scholar 

  106. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpe S (1997c) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatr. Res. 66(1):1–11

    CAS  Google Scholar 

  107. Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C, Desnyder R (1997d) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol. Psychiatry 42(5):349–358

    PubMed  CAS  Google Scholar 

  108. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G, Bosmans E, De Meester I, Benoy I, Neels H, Demedts P, Janca A, Scharpe S, Smith RS (1998a) The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10(4):313–318

    PubMed  CAS  Google Scholar 

  109. Maes M, Song C, Lin A, DeJong R, Van Gastel A, Kenis G, Bosmans E, DeMeester I, Neels H, Janca A, Scharpe S, Smith RS (1998b) Immune and clinical correlates of psychological stress-induced production of interferon-( and IL-10 in humans. In: Plotnikoff NP, Faith RE, Murgo AJ, Good RA (eds) Cytokines, Stress and Immunity, pp 39–50

  110. Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY (1999a) Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatr. Res. 85(3):275–291

    CAS  Google Scholar 

  111. Maes M, Libbrecht I, van Hunsel F, Campens D, Meltzer HY (1999b) Pindolol and mianserin augment the antidepressant activity of fluoxetine in hospitalized major depressed patients, including those with treatment resistance. J. Clin. Psychopharmacol. 19(2):177–182

    PubMed  CAS  Google Scholar 

  112. Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, Bosmans E, Scharpe S (1999c) Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacol. 20(4):370–379

    CAS  Google Scholar 

  113. Maes M, Song C, Lin AH, Pioli R, Kenis G, Kubera M, Bosmans E (1999d) In vitro immunoregulatory effects of lithium in healthy volunteers. Psychopharmacol. (Berl) 143(4):401–407

    CAS  Google Scholar 

  114. Maes M, Van Bockstaele DR, Gastel A, Song C, Schotte C, Neels H, DeMeester I, Scharpe S, Janca A (1999e) The effects of psychological stress on leukocyte subset distribution in humans: evidence of immune activation. Neuropsychobiol. 39(1):1–9

    CAS  Google Scholar 

  115. Maes M, Christophe A, Bosmans E, Lin A, Neels H (2000) In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychologic stress. Biol. Psychiatr. 47(10):910–920

    CAS  Google Scholar 

  116. Maes M, Capuron L, Ravaud A, Gualde N, Bosmans E, Egyed B, Dantzer R, Neveu PJ (2001a) Lowered serum dipeptidyl peptidase IV activity is associated with depressive symptoms and cytokine production in cancer patients receiving interleukin-2-based immunotherapy. Neuropsychopharmacol. 24(2):130–140

    CAS  Google Scholar 

  117. Maes M, Ombelet W, De Jongh R, Kenis G, Bosmans E (2001b) The inflammatory response following delivery is amplified in women who previously suffered from major depression, suggesting that major depression is accompanied by a sensitization of the inflammatory response system. J. Affect. Disord. 63(1–3):85–92

    PubMed  CAS  Google Scholar 

  118. Maes M, Ombelet W, Verkerk R, Bosmans E, Scharpe S (2001c) Effects of pregnancy and delivery on the availability of plasma tryptophan to the brain: relationships to delivery-induced immune activation and early post-partum anxiety and depression. Psychol. Med. 31(5):847–858

    PubMed  CAS  Google Scholar 

  119. Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpe S (2002) Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci. 71(16):1837–1848

    PubMed  CAS  Google Scholar 

  120. Maes M, Mihaylova I, Bosmans E (2007a) Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol. Lett. 28(4):456–462

    PubMed  CAS  Google Scholar 

  121. Maes M, Mihaylova I, DeRuyter MD, Kubera M, Bosmans E (2007b) The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression–and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol. Lett. 28(6):826–831

    PubMed  CAS  Google Scholar 

  122. Maes M, Mihaylova I, Kubera M, Bosmans E (2007c) Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol. Lett. 28(4):463–469

    PubMed  CAS  Google Scholar 

  123. Maes M, Mihaylova I, Leunis JC (2007d) Increased serum IgM antibodies directed against phosphatidyl inositol (Pi) in chronic fatigue syndrome (CFS) and major depression: evidence that an IgM-mediated immune response against Pi is one factor underpinning the comorbidity between both CFS and depression. Neuro Endocrinol. Lett. 28(6):861–867

    PubMed  Google Scholar 

  124. Maes M, Mihaylova I, Ategis J-C (2008a) Evidence for an IgM-mediated immune response directed against nitro-bovine serum albumin (BSA) in chronic fatigue syndrome (CFS) and major depression (MDD): evidence that the immune response to nitrosative stress-induced damage of BSA is more pronounced in CFS than in MDD. Neuro Endocrinol. Lett. 2008, In press

  125. Maes M, Kubera M, Leunis JC (2008b) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol. Letters. 29(1):117–124

    Google Scholar 

  126. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20(24):9104–9110

    PubMed  CAS  Google Scholar 

  127. Mamalakis G, Kalogeropoulos N, Andrikopoulos N, Hatzis C, Kromhout D, Moschandreas J, Kafatos A (2006) Depression and long chain n-3 fatty acids in adipose tissue in adults from Crete. Eur. J. Clin. Nutr. 60(7):882–888

    PubMed  CAS  Google Scholar 

  128. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J. Alzheimer’s Dis. 10(1):59–73 Review

    CAS  Google Scholar 

  129. Marcus SM, Young EA, Kerber KB, Kornstein S, Farabaugh AH, Mitchell J, Wisniewski SR, Balasubramani GK, Trivedi MH, Rush AJ (2005) Gender differences in depression: findings from the STAR*D study. J. Affect. Disord. 87(2–3):141–150

    PubMed  Google Scholar 

  130. Miller CL, Llenos IC, Dulay JR, Weis S (2006) Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 1073–1074:25–37

    PubMed  Google Scholar 

  131. Mohr DC, Goodkin DE, Islar J, Hauser SL, Genain CP (2001) Treatment of depression is associated with suppression of nonspecific and antigen-specific T(H)1 responses in multiple sclerosis. Arch. Neurol. 58(7):1081–1086

    PubMed  CAS  Google Scholar 

  132. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97(6):1676–1689 Review

    PubMed  CAS  Google Scholar 

  133. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    PubMed  CAS  Google Scholar 

  134. Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF, Nestler EJ (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol. Psychiatr. 61(2):187–197

    CAS  Google Scholar 

  135. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatr. 11(7):680–684

    CAS  Google Scholar 

  136. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, Greiner K, Nemeroff CB, Miller AH (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. New Engl. J. Med. 344(13):961–966

    PubMed  CAS  Google Scholar 

  137. Myint AM, Kim YK, Verkerk R, Park SH, Scharpe S, Steinbusch HW, Leonard BE (2007) Tryptophan breakdown pathway in bipolar mania. J. Affect. Disord. 102(1–3):65–72

    PubMed  CAS  Google Scholar 

  138. Ngai LY, Herbert J (2005) Glucocorticoid enhances the neurotoxic actions of quinolinic acid in the striatum in a cell-specific manner. J. Neuroendocrinol. 17(7):424–434

    PubMed  CAS  Google Scholar 

  139. Nguyen KT, Deak T, Owens SM, Kohno T, Fleshner M, Watkins LR, Maier SF (1998) Exposure to acute stress induces brain interleukin-1beta protein in the rat. J. Neurosci. 18:2239–2246

    PubMed  CAS  Google Scholar 

  140. Noraberg J, Poulsen FR, Blaabjerg M, Kristensen BW, Bonde C, Montero M, Meyer M, Gramsbergen JB, Zimmer J (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr. Drug Targets. CNS Neurol. Disord. 4(4):435–452 Review

    PubMed  CAS  Google Scholar 

  141. Noraberg J, Jensen CV, Bonde C, Montero M, Nielsen JV, Jensen NA, Zimmer J (2007) Developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice with example of excitotoxic neurodegeneration. ATLA. 35(1):61–70 Review

    PubMed  CAS  Google Scholar 

  142. O'Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J. Psychiatr. Res. 41(3–4):326–331

    PubMed  Google Scholar 

  143. O'Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2008) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry. [Epub ahead of print]

  144. Overstreet DH, Friedman E, Mathé AA, Yadid G (2005) The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci. Biobeh. Rev. 29(4–5):739–759

    CAS  Google Scholar 

  145. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatr. 49(5):391–404

    CAS  Google Scholar 

  146. Patel HC, Ross FM, Heenan LE, Davies RE, Rothwell NJ, Allan SM (2006) Neurodegenerative actions of interleukin-1 in the rat brain are mediated through increases in seizure activity. J. Neurosci. Res. 83(3):385–391

    PubMed  CAS  Google Scholar 

  147. Peet M, Murphy B, Shay J, Horrobin D (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatr. 43(5):315–319

    CAS  Google Scholar 

  148. Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFNγ, TNF-alpha, and IFNα. J. Interf. Cytokine Res. 17(10):589–595

    CAS  Article  Google Scholar 

  149. Periyasamy S, Sanchez ER (2002) Antagonism of glucocorticoid receptor transactivity and cell growth inhibition by transforming growth factor-beta through AP-1-mediated transcriptional repression. Int. J. Biochem. Cell Biol. 34(12):1571–1585

    PubMed  CAS  Google Scholar 

  150. Pettit JW, Lewinsohn PM, Joiner TE Jr (2006) Propagation of major depressive disorder: relationship between first episode symptoms and recurrence. Psychiatr. Res. 141(3):271–278

    Google Scholar 

  151. Pláteník J, Stopka P, Vejrazka M, Stípek S (2001) Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction. Free Radical Res. 34(5):445–459

    Google Scholar 

  152. Polleux F, Ghosh A (2002) The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Science STKE 136(19):1–11

    Google Scholar 

  153. Pong K (2003) Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Exp. Opin. Biol. Therap. 3(1):127–139 Review

    CAS  Google Scholar 

  154. Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am. J. Psychiatry 149(8):999–1010

    PubMed  CAS  Google Scholar 

  155. Post RM (2007) Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neurosci. Biobehav. Rev 31(6):858–873

    PubMed  Google Scholar 

  156. Potashkin JA, Meredith GE (2006) The role of oxidative stress in the dysregulation of gene expression and protein metabolism in neurodegenerative disease. Antioxidant Redox Sign. 8(1–2):144–151 Review

    CAS  Google Scholar 

  157. Qian L, Hong JS, Flood PM (2006) Role of microglia in inflammation-mediated degeneration of dopaminergic neurons: neuroprotective effect of interleukin 10. J. Neural Transm. Suppl. 70:367–371

    PubMed  CAS  Google Scholar 

  158. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462

    PubMed  Google Scholar 

  159. Rao JS, Lee HJ, Rapoport SI, Bazinet RP (2008) Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol. Psychiatr. 13(6):585–596

    CAS  Google Scholar 

  160. Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem. Res. 16(10):1139–1143

    PubMed  CAS  Google Scholar 

  161. Sakic B, Szechtman H, Braciak T, Richards C, Gauldie J, Denburg JA (1997) Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Res. Bull. 44(2):155–165

    PubMed  CAS  Google Scholar 

  162. Sakic B, Gauldie J, Denburg JA, Szechtman H (2001) Behavioral effects of infection with IL-6 adenovector. Brain Beh Immun. 15(1):25–42

    CAS  Google Scholar 

  163. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nature Reviews Neuroscience 5:917–930

    PubMed  CAS  Google Scholar 

  164. Sandi C, Bisaz R (2007) A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinol. 85(3):158–176

    CAS  Google Scholar 

  165. Sapolsky RM (2004) Is impaired neurogenesis relevant to the affective symptoms of depression? Biol. Psychiatry 56(3):137–139

    PubMed  Google Scholar 

  166. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum. Psychopharmacol. 22(2):67–73

    PubMed  CAS  Google Scholar 

  167. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol. Biol. Psychiatr. 29(2):201–217

    CAS  Google Scholar 

  168. Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Beh. Pharmacol. 18(5–6):391–418

    CAS  Google Scholar 

  169. Schulte-Herbruggen O, Nassenstein C, Lommatzsch M, Quarcoo D, Renz H, Braun A (2005) Tumor necrosis factor-alpha and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J. Neuroimmunol. 160(1–2):204–209

    PubMed  Google Scholar 

  170. Schwarcz R, Köhler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci. Lett. 38(1):85–90

    PubMed  CAS  Google Scholar 

  171. Shapira-Lichter I, Beilin B, Ofek K, Bessler H, Gruberger M, Shavit Y, Seror D, Grinevich G, Posner E, Reichenberg A, Soreq H, Yirmiya R (2008) Cytokines and cholinergic signals co-modulate surgical stress-induced changes in mood and memory. Brain Beh. Immun. 22:388–398

    CAS  Google Scholar 

  172. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15:1768–1777

    PubMed  CAS  Google Scholar 

  173. Sobocki P, Jonsson B, Angst J, Rehnberg C (2006) Cost of depression in Europe. J. Ment. Health Policy Econ. 9(2):87–98

    PubMed  Google Scholar 

  174. Sobczak S, Honig A, Christophe A, Maes M, Helsdingen RW, De Vriese SA, Riedel WJ (2004) Lower high-density lipoprotein cholesterol and increased omega-6 polyunsaturated fatty acids in first-degree relatives of bipolar patients. Psychol. Med 34(1):103–112

    PubMed  CAS  Google Scholar 

  175. Song C, Leonard BE (1995) Interleukin-2-induced changes in behavioural, neurotransmitter, and immunological parameters in the olfactory bulbectomized rat. Neuroimmunomodulation. 2(5):263–273

    PubMed  CAS  Google Scholar 

  176. Song C, Leonard BE, Horrobin DF (2004) Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 7(1):43–54

    PubMed  Article  CAS  Google Scholar 

  177. Song C, Li X, Kang Z, Kadotomi Y (2007) Omega-3 fatty acid ethyl-eicosapentaenoate attenuates IL-1beta-induced changes in dopamine and metabolites in the shell of the nucleus accumbens: involved with PLA2 activity and corticosterone secretion. Neuropsychopharmacol. 32(3):736–744

    CAS  Google Scholar 

  178. Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Beh. Immun. 21:901–912

    CAS  Google Scholar 

  179. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol. Psychiatr. 56(9):640–650

    Google Scholar 

  180. Stone TW, Behan WM (2007) Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist. J. Neurosci. Res. 85(5):1077–1085

    PubMed  CAS  Google Scholar 

  181. Stork O, Welzl H, Wotjak CT, Hoyer D, Delling M, Cremer H, Schachner M (1999) Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. J. Neurobiol. 40:343–355

    PubMed  CAS  Google Scholar 

  182. Turner CA, Akil H, Watson SJ, Evans SJ (2006) The fibroblast growth factor system and mood disorders. Biol. Psychiatr. 59(12):1128–1135

    CAS  Google Scholar 

  183. Ueda S, Sakakibara S, Yoshimoto K (2005) Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neurosci. 135:395–402

    CAS  Google Scholar 

  184. Vaidya VA, Duman RS (2001) Depression-emerging insights from neurobiology. Brit. Med. Bull. 57:61–79

    PubMed  CAS  Google Scholar 

  185. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2(3):266–270

    PubMed  Google Scholar 

  186. Viviani B, Gardoni F, Bartesaghi S, Corsini E, Facchi A, Galli CL, Di Luca M, Marinovich M (2006) Interleukin-1 beta released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J. Biol. Chem. 281(40):30212–3022

    PubMed  CAS  Google Scholar 

  187. Wadee AA, Kuschke RH, Wood LA, Berk M, Ichim L, Maes M (2002) Serological observations in patients suffering from acute manic episodes. Human Psychopharmacol. 17(4):175–179

    Google Scholar 

  188. Walz JC, Frey BN, Andreazza AC, Cereser KM, Cacilhas AA, Valvassori SS, Quevedo J, Kapczinski F (2007) Effects of lithium and valproate on serum and hippocampal neurotrophin-3 levels in an animal model of mania. J. Psychiatr. Res. 42(5):416–421

    PubMed  Google Scholar 

  189. Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmac. Design 12(27):3521–3533 Review

    CAS  Google Scholar 

  190. Wichers MC, Maes M (2004) The role of indoleamine 2, 3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J. Psychiatr. Neurosci. 29(1):11–17

    Google Scholar 

  191. Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpe S, Maes M (2005) IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatr. 10(6):538–544

    CAS  Google Scholar 

  192. Wichers MC, Kenis G, Koek GH, Robaeys G, Nicolson NA, Maes M (2007) Interferon-alpha-induced depressive symptoms are related to changes in the cytokine network but not to cortisol. J. Psychosom. Res. 62(2):207–214

    PubMed  Google Scholar 

  193. Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J. Neurotrauma. 21:1457–1467

    PubMed  Google Scholar 

  194. Xia Z, DePierre JW, Nassberger L (1996) Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacol. 34(1):27–37

    CAS  Google Scholar 

  195. Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res. 1162:9–18

    PubMed  CAS  Google Scholar 

  196. Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, Delude RL, Fink MP (2003) IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am. J. Physiol. Gastrointestinal Liver Physiol. 285(3):G621–629

    CAS  Google Scholar 

  197. Yirmiya R (1996) Endotoxin produces a depressive-like episode in rats. Brain Res. 711(1–2):163–74

    PubMed  CAS  Google Scholar 

  198. Yirmiya R (1997) Behavioral and psychological effects of immune activation: implications for ‘depression due to a general medical condition’. Curr. Opin. Psychiatr. 10:470–476

    Google Scholar 

  199. Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R, Barak O, Reichenberg A, Cohen E, Shavit Y, Ovadia H (1999) Cytokines, "depression due to a general medical condition," and antidepressant drugs. Adv. Exp. Med. Biol. 461:283–316

    PubMed  CAS  Google Scholar 

  200. Yirmiya R, Pollak Y, Barak O, Avitsur R, Ovadia H, Bette M, Weihe E, Weidenfeld J (2001) Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacol. 24(5):531–544

    CAS  Google Scholar 

  201. Zhu SW, Pham TM, Aberg E, Brene S, Winblad B, Mohammed AH, Baumans V (2006) Neurotrophin levels and behaviour in BALB/c mice: impact of intermittent exposure to individual housing and wheel running. Beh. Brain Res. 167(1):1–8

    CAS  Google Scholar 

  202. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res. 1034(1–2):11–24

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Maes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maes, M., Yirmyia, R., Noraberg, J. et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24, 27–53 (2009). https://doi.org/10.1007/s11011-008-9118-1

Download citation

Keywords

  • Depression
  • Inflammation
  • Cytokines
  • Neurodegeneration
  • Oxidative stress
  • Nitrosative stress
  • Tryptophan
  • Serotonin
  • IDO.