Skip to main content
Log in

Effects of development and dopamine depletion on striatal NMDA receptor-mediated calcium uptake

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) is the currency of N-methyl-D-aspartate (NMDA) receptor mediated signal transduction pathways involved in the modification of synaptic efficacy during regulation of excitatory inputs into the striatum. The aim of the present study was to investigate the effects of development and dopamine depletion on NMDA receptor function. NMDA receptors were stimulated by incubation of striatal sections (350 μm) in buffer containing NMDA (100 μm) for 2 min, the slices were washed and uptake of radioactively labelled calcium (45Ca2+) was measured. Dopamine depletion has been reported to result in alterations of glutamate receptor expression and upregulation of NMDA receptor activity. However, the results of the present study show that dopamine depletion does not alter NMDA-stimulated Ca2+ uptake into rat striatal slices in vitro. Unilateral striatal dopamine depletion was achieved by infusion of 6-hydroxydopamine (6-OHDA, 13.5 μg/4.5 μl) into the medial forebrain bundle (MFB) of the left hemisphere of ten rats. NMDA-stimulated 45Ca2+ uptake into striata following dopamine depletion was not significantly different from NMDA-stimulated 45Ca2+ uptake into striata obtained from sham-operated rats. Other factors that induce changes in NMDA receptor function include development and aging. In young rats aged 7 weeks old (n = 7) and 16 weeks old (n = 6) a significant 2–3 fold decrease in striatal NMDA receptor function was observed with increasing age over the 9 week period of development. To our knowledge these are the first results to show developmental decreases of NMDA receptor function in the striatum of juvenile rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arbuthnott GW, Ingham CA, Wickens JR (2000) Dopamine and synaptic plasticity in the neostriatum. J Anat 196(4):587–596

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Hof PR, Standaert DG, Xing Y, Nelson SE, Young AB, Magnusson KR (2004) Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiol Aging 25(2):201–208

    Article  PubMed  CAS  Google Scholar 

  • Blackstone C, Sheng M (1999) Protein targeting and calcium signalling microdomains in neuronal cells. Cell Calcium 26(5):181–192

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Nicoll R (1993) Molecular machines integrate coincident synaptic signals. Neuron 10(Suppl):65–75

    Google Scholar 

  • Calabresi P, Mercuri NB, Bernardi G (1990) Synaptic and intrinsic control of membrane excitability of neostriatal neurons. II. An in vitro analysis. J Neurophysiol 63(4):663–675

    PubMed  CAS  Google Scholar 

  • Carman LS, Gage FH, Shults CW (1991) Partial lesion of the substantia nigra: relation between extent of lesion and rotational behavior. Brain Res 553(2):275–283

    Article  PubMed  CAS  Google Scholar 

  • Carroll RC, Zukin RS (2002) NMDA receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25(11):571–577

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Walsh JP, Hull CD, Buchwald NA, Levine MS (1989) Intracellular neurophysiological analysis reveals alterations in excitation in striatal neurons in aged rats. Brain Res 494(4):215–226

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Li Z, Levine MS (1996) Aging reduces neostriatal responsiveness to N-methyl-D-aspartate and dopamine: an in vitro electrophysiological study. Neuroscience 73(3):733–750

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–84

    PubMed  CAS  Google Scholar 

  • Charpier S, Mahon, S, Deniau JM (1999) In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 91(4):1209–1222

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51(Suppl 2):S30–S35

    PubMed  CAS  Google Scholar 

  • Chen Q, Reiner A (1996) Cellular distribution of the NMDA receptor NR2A/2B subunits in the rat striatum. Brain Res 743(1–2):346–352

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335

    Article  PubMed  CAS  Google Scholar 

  • Dunah AW, Standaert DG (2003) Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. J Neurochem 85(4):935–943

    Article  PubMed  CAS  Google Scholar 

  • Dunah AW, Wang Y, Yasuda RP, Kameyama K, Huganir RL, Wolfe BB, Standaert DG (2000) Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57(2):342–352

    PubMed  CAS  Google Scholar 

  • Dunia R, Buckwalter G, Defazio T, Villar FD, McNeill TH, Walsh JP (1996) Decreased duration of Ca2+-mediated plateau potentials in striatal neurons from aged rats. J Neurophysiol 76(4):2353–2363

    PubMed  CAS  Google Scholar 

  • Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563(2):345–358

    Article  PubMed  CAS  Google Scholar 

  • Feldman D, Sherin JE, Press WA, Bear MF (1990) N-methyl-D-aspartate-evoked calcium uptake by kitten visual cortex maintained in vitro. Exp Brain Res 80:252–259

    Article  PubMed  CAS  Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. OIKOS 105(3):657–663

    Article  Google Scholar 

  • Götz T, Kraushaar U, Geiger J, Lubke J, Berger T, Jonas P (1997) Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 17(1):204–215

    PubMed  Google Scholar 

  • Griffith WH, Jasek MC, Bain SH, Murchison D (2000) Modification of ion channels and calcium homeostasis of basal forebrain neuron during aging. Behav Brain Res 115:219–233

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26(2):81–89

    Article  PubMed  CAS  Google Scholar 

  • Hernández-López S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance.J Neurosci 17(9):3334–3342

    PubMed  Google Scholar 

  • Hudson JL, van Horne CG, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, Gerhardt GA (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626(1–2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Ingham CA, Hood SH, Taggart P, Arbuthnott GW (1998) Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci 18(12):4732–4743

    PubMed  CAS  Google Scholar 

  • Jahr CE (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255:470–472

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure–stability–function relationships of dendritic spines. Trends Neurosci 26(7):360–368

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci 20(6):264–268

    Article  PubMed  CAS  Google Scholar 

  • Kish LJ, Palmer MR, Gerhardt GA (1999) Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and D-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats. Brain Res 833(1):58–70

    Article  PubMed  CAS  Google Scholar 

  • Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+−dependent inactivation of NMDA receptors.J Neurosci 19(4):1165–1178

    PubMed  CAS  Google Scholar 

  • Lange KW, Kornhuber J, Riederer P (1997) Dopamine/glutamate interactions in Parkinson’s disease. Neurosci Biobehav Rev 21(4):393–400

    Article  PubMed  CAS  Google Scholar 

  • Lehohla M, Russell V, Kellaway L, Govender A (2000) Development of a method to evaluate glutamate receptor function in rat barrel cortex slices. Metab Brain Dis 15(4):305–314

    Article  PubMed  CAS  Google Scholar 

  • Lehohla M, Russell V, Kellaway L (2001) NMDA-stimulated Ca2+ uptake into barrel cortex slices of spontaneously hypertensive rats. Metab Brain Dis 16(3/4):135–143

    Article  Google Scholar 

  • Levine MS, Adinolfi AM, Fisher RS, Hull CD, Guthrie D, Buchwald NA (1988) Ultrastructural alterations in caudate nucleus in aged cats. Brain Res 440(2):267–279

    Article  PubMed  CAS  Google Scholar 

  • Lin JY, Dubey R, Funk GD, Lipski J (2003) Receptor subtype-specific modulation by dopamine of glutamatergic responses in striatal medium spiny neurons. Brain Res 959:251–262

    Article  PubMed  CAS  Google Scholar 

  • Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1655

    Article  PubMed  Google Scholar 

  • Loftis JM, Janowsky A (2003) The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97(1):55–85

    Article  PubMed  CAS  Google Scholar 

  • Magill PJ, Bolam JP, Bevan MD (2001) Dopamine regulates the impact of cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106(2):313–330

    Article  PubMed  CAS  Google Scholar 

  • Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Protein determination for large number of samples. Anal Chem 31:964

    Article  CAS  Google Scholar 

  • Mitchell JJ, Anderson KJ (1998) Age-related changes in [3H]MK-801 binding in the Fischer 344 rat brain. Neurobiol Aging 19(3):259–265

    Article  PubMed  CAS  Google Scholar 

  • Montastruc JL, Rascol O, Senard JM (1997) Glutamate antagonists and Parkinson’s disease: a review of clinical data. Neurosci Biobehav Rev 21(4):477–480

    Article  PubMed  CAS  Google Scholar 

  • Moore AE, Cicchetti F, Hennen J, Isacson O (2001) Parkinsonian motor deficits are reflected by proportional A9/A10 dopamine neuron degeneration in the rat. Exp Neurol 172(2):363–376

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34(10):1219–1237

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  • Nash JE, Brotchie JM (2002) Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat. Mov Disord 17(3):455–466

    Article  PubMed  Google Scholar 

  • Nisenbaum ES, Wilson CJ (1995) Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci 15(6):4449–4463

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Maclver MB (2000) Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor mediated responses. Anethesiology 92(1):228–236

    Article  CAS  Google Scholar 

  • Oh JD, Russell DS, Vaughan CL, Chase TN (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res 813(1):150–159

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Reynolds JN, Wickens JR (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 15(4–6):507–521

    Article  PubMed  Google Scholar 

  • Saimi Y, Kung C (2002) Calmodulin as an ion channel subunit. Annu Rev Physiol 64:289–311

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Porras A, Arco AD, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780

    Article  PubMed  CAS  Google Scholar 

  • Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmod MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21(12):4427–4435

    PubMed  CAS  Google Scholar 

  • Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG (2001) Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci 21(16):6430–6439

    PubMed  CAS  Google Scholar 

  • Tseng KY, Riquelme LA, Murer MG (2004) Impact of D1-class dopamine receptor on striatal processing of cortical input in experimental parkinsonism in vivo. Neuroscience 123(2):238–293

    Article  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitaive recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24(3):485–493

    Article  PubMed  CAS  Google Scholar 

  • van Rossum D, Hanisch U-K (1999) Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci 22(7):290–295

    Article  PubMed  Google Scholar 

  • Venance L, Glowinski J (2003) Heterogeneity of spike frequency adaptation among medium spiny neurons from the rat striatum. Neuroscience 122:77–92

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Barnes CA (2000) Regional changes in the hippocampal density of AMPA and NMDA receptors across the lifespan of the rat. Brain Res 885:1–5

    Article  PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann NY Acad Sci 991:199–213

    Article  PubMed  CAS  Google Scholar 

  • Wickens JR, Wilson CJ (1998) Regulation of action potential firing in spiny neurons of the rat neostriatum in vivo. J Neurophysiol 79:2358–2364

    PubMed  CAS  Google Scholar 

  • Yasumoto S, Tanaka E, Hattori G, Maeda H, Higashi H (2002) Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum. J Neurophysiology 87:1234–1243

    CAS  Google Scholar 

  • Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proceedings of the National Academy of Sciences USA 101(41):14943–14948

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Askalan R, Keil GJ, Salter MW (1997) NMDA channel regulation by channels-associated protein tyrosine kinase Src. Science 275:674–678

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council of South Africa and the University of Cape Town. Thabelo Khoboko was supported by the Levi-Montalcini Fellowship in Neuroscience for African Women awarded by the International Brain Research Organization (IBRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivienne A. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoboko, T., Russell, V.A. Effects of development and dopamine depletion on striatal NMDA receptor-mediated calcium uptake. Metab Brain Dis 23, 9–30 (2008). https://doi.org/10.1007/s11011-007-9050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-007-9050-9

Keywords

Navigation