Skip to main content
Log in

Arginine administration reduces creatine kinase activity in rat cerebellum

  • Orignal Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

In the present study was evaluated the in vivoeffects of arginine administration on creatine kinase (CK) activity in cerebellum of rats. We also tested the influence of antioxidants, namely α-tocopherol and ascorbic acid and the nitric oxide sinthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), on the effects elicited by Arg in order to investigate the possible participation of nitric oxide (NO) and/or its derivatives peroxynitrite (ONOO) and other/or free radicals on the effects of arginine on CK activity. Sixty-day-old rats were treated with a single i.p. injection of saline (control, group I), arginine (0.8 g/Kg) (group II), L-NAME (2.0 mg/Kg or 20.0 mg/Kg) (group III) or Arg (0.8 g/Kg) plus L-NAME (2.0 mg/Kg or 20.0 mg/Kg) (group IV) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or α-tocopherol (40 mg/Kg) and ascorbic acid (100 mg/Kg). Twelve hours after the last injection of the antioxidants, the rats received one i.p. injection of arginine (0.8 g/Kg) or saline and were killed 1 h later. Results showed that total and cytosolic CK activities were significantly inhibited by arginine administration in cerebellum of rats, in contrast to mitochondrial CK activity which was not affected by this amino acid. Furthermore, simultaneous injection of L-NAME (20.0 mg/Kg) and treatment with α-tocopherol and ascorbic acid prevented these effects. The data indicate that the reduction of CK activity in cerebellum of rats caused by arginine was probably mediated by NO and/or its derivatives ONOOand other free radicals. Considering the importance of CK for the maintenance of energy homeostasis in the brain, if this enzyme inhibition also occurs in hyperargininemic patients, it is possible that CK inhibition may be one of the mechanisms by which arginine is neurotoxic in hyperargininemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksenov MI, Aksenova MV, Payne RM, Smith CD, Markesbery WR, Carney JM (1997) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease. Exp Neurol 146:458–465

    Article  PubMed  CAS  Google Scholar 

  • Aksenov M, Aksenova MV, Butterfield AD, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  PubMed  CAS  Google Scholar 

  • Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30:979–988

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364:584

    Article  PubMed  CAS  Google Scholar 

  • Blouin JS, Bard C, Paillard J (2004) Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res 155:63–68

    Article  PubMed  Google Scholar 

  • Brusilow SW, Horwich A (2001) Urea Cycle enzymes. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  • Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 76:425–434

    Article  PubMed  CAS  Google Scholar 

  • Buchmann I, Milakofsky L, Harris N, Hofford JM, Vogel WH (1996) Effect of arginine administration on plasma and brain levels of arginine and various related amino compounds in the rat. Pharmacology 53:133–142

    Article  PubMed  CAS  Google Scholar 

  • Burmistrov SO, Mashek OP, Kotin AM (1992) The action of acute alcoholic intoxication on antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp Klin Farmakol 55:54–56

    PubMed  CAS  Google Scholar 

  • Burton GW, Wronska U, Stone L, Foster DO, Ingold KU (1990) Biokinetics of dietary RRR-α-tocopherol in the male guinea-pig at three dietary levels of vitamin C and two levels of vitamin E. Lipids 25:199–210

    Article  PubMed  CAS  Google Scholar 

  • Cornelio AR, Rodrigues V Jr, Wyse ATS, Dutra-Filho CS, Wajner M, Wannmacher CMD (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Devl Neurosci 22:95–101

    Google Scholar 

  • Costabeber E, Kessler A, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  PubMed  CAS  Google Scholar 

  • David SS, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabelling with aberrant cytosol-membrane partitioning. Mol Brain Res 54:276–287

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide in neuronal degeneration. Proc Soc Exp Biol Med 211:33–40

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10:179–190

    Article  PubMed  CAS  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage 21:1416–1427

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Delwing D, Wannamacher CMD, Wajner M, Dutra-Filho CS, Wyse ATS (2002) Arginine administration reduces catalase activity in midbrain of rats. NeuroReport 13:1301–1304

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Tagliari B, Streck EL, Wannamacher CMD, Wajner M, Wyse ATS (2003) Reduction of energy metabolism in rat hippocampus by aginine administration. Brain Res 983:58–63

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Tagliari B, Chiarani F, Wannmacher CMD, Wajner M, Wyse ATS (2006) α-tocopherol and ascorbic acid administration prevents the impairment of brain energy metabolism of hyperargininemic rats. Cell Mol Neurobiol 26:177–189

    Google Scholar 

  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 91:4214–4218

    Article  PubMed  CAS  Google Scholar 

  • Fleck RMM, Rodrigues V Jr, Giacomazzi J, Parissoto D, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2005) Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 46:391–397

    Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  PubMed  CAS  Google Scholar 

  • Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly R (1996) Nitric oxide inhibits creatine kinase and regulates heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine, 3rd edn. Oxford University Press, London

    Google Scholar 

  • Hamman BL, Bittl JA, Jacobus WE, Aleen PD, Spencer RS, Tina R, Ingwall JS (1995) Inhibition of creatine kinase reaction decrease the contractile reserve of isolated rat hearts. Am J Physiol 269:H1030–H1036

    PubMed  CAS  Google Scholar 

  • Heales SJR, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochem Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenova MV, Aksenov MY, Gabbita SP, Carney JM, Lowell M, Markesbery WR, Butterfield DA (1995) Brain regional correspondence between Alzheimer’s disease histopathology biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  PubMed  CAS  Google Scholar 

  • Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  PubMed  CAS  Google Scholar 

  • Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S (1998) The human arginases and arginase deficiency. J Inherit Metab Dis 21:86–100

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Costabeber E, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2003) Proline reduces creatine kinase activity in the brain cortex of rats. Neurochem Res 28:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Konorev E, Hogg N, Kalyanaraman B (1998) Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett 427:171–174

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Hoyle CHV, Burnstock G (1997) Nitric oxide in health and disease. Biochemical Research Topics. Cambridge University Press, Cambridge, pp 3–11

    Google Scholar 

  • Lipton SA, Choy YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Manos P, Bryan GK, Edmond J (1991) Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. J Neurochem 56:2101–2107

    Article  PubMed  CAS  Google Scholar 

  • Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    PubMed  CAS  Google Scholar 

  • Mekhfi H, Veksler V, Mateo PH, Maupoil V, Rochette L, Ventura-Clapier R (1996) Creatine kinase in the main target of reactive oxygen species in cardiac myofibrils. Circ Res 17:1016–1027

    Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: Roles, tools and controls. Cell 78:915–918

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Kirsch JR, Koehler RC, Bredt SD, Snyder SH, Traystman RJ (1993) Effect of nitric oxide synthase inhibition on cerebral blood flow and injury volume during focal ischemia in cats. Stroke 24:1718–1724

    Google Scholar 

  • O’Gorman E, Beutner G, Wallimann T, Brdiczka D (1996) Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle. Biochim Biophys Acta 1276:161–170

    Article  PubMed  Google Scholar 

  • Pilla C, Cardoso RFO, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25

    Article  PubMed  CAS  Google Scholar 

  • Reis EA, Oliveira LS, Lamers ML, Netto CA, Wyse ATS (2002) Arginine administration inhibits hippocampal Na+,K+-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res 951:151–157

    Article  PubMed  Google Scholar 

  • Saks VA, Kuznetsov AV, Kuprianov VV, Miceli MV, Jacobus WE (1985) Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 260:7757–7764

    Google Scholar 

  • Saks VA, Ventura-Clapier R, Aliev MK (1996) Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. Biochim Biophys Acta 1274:81–88

    Article  PubMed  Google Scholar 

  • Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger H, Wallimann T (1988) Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: Characterization, localization and structurefunction relationships. J Biol Chem 262:16942–16993

    Google Scholar 

  • Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699

    Article  PubMed  CAS  Google Scholar 

  • Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455

    PubMed  CAS  Google Scholar 

  • Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc) 67:281–292

    Article  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 28:121–140

    Google Scholar 

  • Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133/134:193–220

    Google Scholar 

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M (1998b) Creatine kinase: an enzyme with a central role in cellular energy metabolism. MAGMA 6:116–119

    PubMed  CAS  Google Scholar 

  • Wolosker H, Panizzutti R, Englender S (1996) Inhibition of creatine kinase with S-nitrosoglutathione. FEBS Lett 392:274–276

    Article  PubMed  CAS  Google Scholar 

  • Wyse ATS, Bavaresco CS, Bandinelli C, Streck EL, Franzon R, Dutra-Filho CS, Wajner M (2001) Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+,K+-ATPase activity in midbrain of rats subjected to arginine administration. Neurochem Res 26:515–520

    Article  PubMed  CAS  Google Scholar 

  • Wyse ATS, Zugno AI, Streck EL, Matte C, Calcagnotto T, Wannmacher CMD, Wajner M (2002) Inhibition of Na+,K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Kaneko M, Masuda H, Hon RG, Kobayashi A, Yamazak N (1992) Decrease in heart mitochondrial creatine kinase activity due to oxygen free radical. Biochim Biophys Acta 1140:78–84

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Gholami A, Sahraei H, Haeri-Rohani A (2003) Role of nitric oxide in the acquisition of apomorphine-or morphine-induced locomotor sensitization. Eur J Pharmacol 482:205–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delwing, D., Cornélio, A.R., Wajner, M. et al. Arginine administration reduces creatine kinase activity in rat cerebellum. Metab Brain Dis 22, 13–23 (2007). https://doi.org/10.1007/s11011-006-9028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9028-z

Keywords

Navigation