Skip to main content

Advertisement

Log in

Lack of clinical manifestation of hereditary haemochromatosis in South African patients with multiple sclerosis

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Caucasian South African patients with multiple sclerosis (MS) were screened for the most common hereditary haemochromatosis (HH) mutations, H63D and C282Y, in order to determine the impact of iron overload on clinical outcome of MS. DNA screening for mutations H63D and C282Y in 118 apparently unrelated MS patients did not reveal significant differences in allele frequencies in comparison with a control group from the same population. Of 17 MS patients heterozygous for C282Y, 3 had below normal and none had above normal transferrin saturation levels. One of the index MS patients, and subsequently also her sister who also has MS, tested positive for two copies of mutation C282Y. Determination of iron status revealed high serum ferritin and transferrin saturation levels in both patients. However, the index patient, being unaware of her C282Y status, had received treatment for iron deficiency in the past and her MS symptoms were less severe than those of her sister who has been wheelchair bound for the past 12 years and who did not take iron supplements. Lack of clinical manifestation of HH without any signs of organ damage in the C282Y homozygous MS patients is in accordance with a role of iron dysregulation in the aetiology of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aisen P (1994) Iron metabolism: an evolutionary perspective. In: Brock JH, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease, Saunders Co. Ltd. London. pp 1–30

    Google Scholar 

  • Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T (2002) Penetrance of 845G–> A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359:211–8

    Article  PubMed  Google Scholar 

  • Day RS (1986) Variegate porphyria. Seminars in Dermatology 5:138–154

    Google Scholar 

  • De Villiers JNP (2003). A multi-disciplinary approach towards elucidating the aetiology of multiple sclerosis. PhD thesis, University of Stellenbosch

  • De Villiers JNP, Kotze MJ (1999) Significance of linkage disequilibrium between mutation C282Y and a MseI polymorphism in population screening and DNA diagnosis of hemochromatosis. Blood Cells Molecules and Disease 15:250–252

    Article  Google Scholar 

  • De Villiers JNP, Hillermann R, de Jong G, Langenhoven E, Rossouw H, Marx MP, Kotze MJ (1999a) High prevalence of the Cys282Tyr HFE mutation facilitates an improved diagnostic service for hereditary haemochromatosis in South Africa. South African Medical Journal 89:279–282

    PubMed  CAS  Google Scholar 

  • De Villiers JNP, Hillermann R, Loubser L, Kotze MJ (1999b) Spectrum of mutations in the HFE gene implicated in hemochromatosis and porphyria. Human Molecular Genetics 8:1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Dean G (1972) The porphyrias. A story of inheritance and environment, J B Lippincott, Philadelphia, (2nd ed).

  • Delatycki et al. (2005). Use of community genetic screening to prevent HFE-associated hereditary haemochromatosis. www.thelancet.com July 23 366

  • Dexter DT, Jenner P, Schapira AVH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Annals of Neurology 32(supplement):94–100.

    Article  Google Scholar 

  • Downey DC (1992) Fatigue syndromes: New thoughts and reinterpretation of previous data. Medical Hypotheses 39:185–190

    Article  PubMed  CAS  Google Scholar 

  • Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Nature 377:150–151

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK (1996). A novel MHC class-I like gene is mutated in patients with hereditary haemochromatosis. Nature Genetics 13:399–408

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman P, Schatzman RC (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proceedings of the National Academy of Sciences (USA) 95:1472–1477

    Article  CAS  Google Scholar 

  • Fitzsimons EJ, Brock JH (2001) Editorial: The anaemia of chronic disease. British Medical Journal 322:811–812

    Article  PubMed  CAS  Google Scholar 

  • Furlan R, Rovaris M, Martinelli Boneschi F, Khademi M, Bergami A, Gironi M, Deleidi M, Agosta F, Franciotta D, Scarpini E, Uccelli A, Zaffaroni M, Kurne A, Comi G, Olsson T, Filippi M, Martino G (2005) Immunological patterns identifying disease course and evolution in multiple sclerosis patients. Journal of Neuroimmunology 65:192–200

    Article  CAS  Google Scholar 

  • Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging 23:1–25

    Article  PubMed  CAS  Google Scholar 

  • Haines JL, The Multiple Sclerosis Genetics Group (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nature Genetics 13:469–471

    Article  PubMed  CAS  Google Scholar 

  • Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimler JB, Martin ER, Oksenberg JR, Lincoln R, Zhang DY, Banatao DR, Gatto N, Goodkin DE, Hauser SL (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. Human Molecular Genetics 7:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Hift RJ, Corrigall AV, Hancock V, Kannemeyer J, Kirsch RE, Meissner PN (2002) Porphyria cutanea tarda: the etiological importance of mutations in the HFE gene and viral infection is population-dependent. Cellular and Molecular Biology (Noisy-le-grand) 48:853–859

    CAS  Google Scholar 

  • Hulet SW, Powers S, Connor JR (1999) Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. Journal of Neurological Sciences 165:48–55

    Article  CAS  Google Scholar 

  • Jellinger K, Kienzl E (1993) Iron deposits in brain disorders. In: Riederer P, Youdim MBH (eds) Iron in Central Nervous System Disorders. Springer-Verlag, New York, pp 19–36.

    Google Scholar 

  • Kotze MJ, de Villiers JNP, Groenewald JZ, Rooney RN, Loubser O, Thiart R, Oosthuizen CJJ, van Niekerk MM, Groenewald IM, Retief AE, Warnich L (1998) Molecular analysis reveals a high mutation frequency in the first untranslated exon of the PPOX gene and largely excluses variegate porphyria in a subset of clinically affected Afrikaner families. Molecular and Cellular Probes 12:293–300

    Article  Google Scholar 

  • Kotze MJ, de Villiers JNP, Rooney RN, Grobbelaar JJ, Mansvelt EPG, Bouwens CSH, Carr J, Stander I, du Plessis L, (2001) Analysis of the NRAMP1 gene implicated in iron transport: association with multiple sclerosis and age effects. Blood Cells, Molecules, and Diseases 27:44–53

    Article  PubMed  CAS  Google Scholar 

  • Kotze MJ, de Villiers JNP, Zaahl MG, Robson KJH (2003) The role of iron metabolism in multiple sclerosis. In: Zatta P (ed) Metal Ions and Neurodegenerative Disorders, World Sci, Singapore, pp 399– 414

    Google Scholar 

  • Larkin EC Rao A (1990) Importance of fetal and neonatal iron: adequacy for normal development of the central nervous system. In: (Dobbing J. ed.), Brain, behaviour and iron in the infant diet, Springer-Verlag, New York, pp 43–62

    Google Scholar 

  • Macy JA, Gilroy J, Perrin JC (1991) Hereditary coproporphyria: an imitator of multiple sclerosis. Archives of Physical Medicine and Rehabilitation 72:703–704

    PubMed  CAS  Google Scholar 

  • Meissner PN, Dailey TA, Hift RJ, Ziman M, Corrigall AV, Roberts AG, Meissner DM, Kirsch RE, Dailey HA (1996) A R59W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nature Genetics 13:95–97

    Article  PubMed  CAS  Google Scholar 

  • Milder MS, Cook JD, Stray S, Finch CA (1980) Idiopathic hemochromatosis, an interim report. Medicine 59:34–49

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16:1215

    PubMed  CAS  Google Scholar 

  • Nielsen JE, Neerup L, Jensen K, Krabbe K (1995) Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome Journal of Neurology. Neurosurgery and Psychiatry 59:318–321

    Article  CAS  Google Scholar 

  • Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J, Connor JR (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. Journal of Neuroscience Research 77:681–689

    Article  PubMed  CAS  Google Scholar 

  • Ponka P (1997) Tissue-specific regulation of iron metabolism and heme synthesis: Distinct control mechanisms in Erythroid cells. Blood 89:1–25

    PubMed  CAS  Google Scholar 

  • Rhodes DA, Raha-Chowdhury R, Cox TM, Trowsdale J (1997) Homozygosity for the predominant Cys282Tyr mutation and absence of disease expression in hereditary haemochromatosis. Journal of Medical Genetics 34:761–764

    PubMed  CAS  Google Scholar 

  • Ristic S, Lovrecic L, Brajenovic-Milic B, Starcevic-Cizmarevic N, Jazbec SS, Sepcic J, Kapovic M, Peterlin B (2005) Mutations in the hemochromatosis gene (HFE) and multiple sclerosis. Neuroscience Letter 383:301–304

    Article  CAS  Google Scholar 

  • Roberts AG, Whatley SD, Morgan RR, Worwood M, Elder GH, Roth MP, Giraldo P (1997) Increased frequency of the haemochromatosis Cys 282 Tyr mutation in sporadic porphyria cutaea tarda. Lancet 349:321–323

    Article  PubMed  CAS  Google Scholar 

  • Rooney RN, Kotze MJ, de Villiers JNP, Hillermann R, Cohen JA (1999) Multiple sclerosis, porphyria-like symptoms and a history of iron deficiency anemia in a family of Scottish descent. American Journal of Medical Genetics 86:194–196

    Article  PubMed  CAS  Google Scholar 

  • Roskams AJI, Connor JR (1994) Iron, transferrin, and ferritin in the rat brain during development and aging. Journal of Neurochemistry 63:709–716

    Article  PubMed  CAS  Google Scholar 

  • Rothwell PM, Charlton D (1998) High incidence and prevalence of multiple sclerosis in south east Scotland: evidence of a genetic predisposition. Journal of Neurology, Neurosurgery and Psychiatry 64:730–735

    CAS  Google Scholar 

  • Rubio JP, Bahlo M, Tubridy N, Stankovich J, Burfoot R, Butzkueven H, Chapman C, Johnson L, Marriott M, Mraz G, Tait B, Wilkinson C, Taylor B, Speed TP, Foote SJ, Kilpatrick TJ, (2004) Extended haplotype analysis in the HLA complex reveals an increased frequency of the HFE-C282Y mutation in individuals with multiple sclerosis. Human Genetics 114:573–80

    Article  PubMed  CAS  Google Scholar 

  • Salter-Cid L, Brunmark A, Peterson PA, Yang Y (2000) The major histocompatibility complex-encoded class I-like HFE abrogates endocytosis of transferrin receptor by inducing receptor phosphorylation. Genes and Immunity 1:409–417

    Article  PubMed  CAS  Google Scholar 

  • Schreiber WE (1996) Iron, porphyrin and bilirubin metabolism. In Kaplan LA, Pesce AJ (eds) Clinical Chemistry, Mosby, St Louis, Missouri, pp 696–715

    Google Scholar 

  • Valberg LS, Flanagan PR, Kertesz A, Ebers GC (1989) Abnormalities in iron metabolism in multiple sclerosis. Canadian Journal of Neurological Sciences 16:184–186

    PubMed  CAS  Google Scholar 

  • Van Gelder W, Huijskes-Heins MIE, Cleton-Soeteman MI, van Dijk JP, van Eijk HG (1998) Iron uptake in blood-brain barrier endothelial cells cultured in iron-depleted and iron-enriched media. Journal of Neurochemistry 71:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Van Rensburg SJ, van Zyl JM, Hon D, Daniels WMU, Hendricks J, Potocnik FCV, Erasmus RT (2004) Biochemical model for inflammation of the brain: the effect of iron and transferrin on monocytes and lipid peroxidation. Metabolic Brain Disease 19:97–112

    Article  PubMed  CAS  Google Scholar 

  • Vitale E, Cook S, Sun R, Specchia C, Subramanian K, Rocchi M, Nathanson D, Schwalb M, Devoto M, Rohowsky-Kochan C (2002) Linkage analysis conditional on HLA status in a large North American pedigree supports the presence of a multiple sclerosis susceptibility locus on chromosome 12p12. Human Molecular Genetics 11:295–300

    Article  PubMed  CAS  Google Scholar 

  • Warnich L, Kotze MJ, Groenewald IM, Groenewald JZ, van Brakel MG, van Heerden CJ, de Villiers JNP, van de Ven WJ, Schoenmakers EF, Taketani S, Retief AE (1996) Identification of three mutations and associated haplotypes in the protoporphyrinogen oxidase gene in South African families with variegate porphyria. Human Molecular Genetics 5:981–984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first two authors contributed equally to the study. The University of Stellenbosch and the Harry and Doris Crossley Foundation supported the study financially. The National Multiple Sclerosis Society of South Africa is acknowledged for distribution of questionnaires to MS patients and data collection. Study participants and their families are acknowledged for their willingness and cooperation to participate in this study. Dr G de Jong, Division of Human Genetics, University of Stellenbosch, is thanked for helpful discussion and support. Drs F. Badenhorst (Panorama Medi-clinic) and Dr GA Prinsloo (Wellington) are thanked for clinical assessment and information of the index patient and her sister. RN Rooney is acknowledged for her insight which led to the initiation of the study on the genetics of multiple sclerosis in South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Nico P de Villiers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotze, M.J., de Villiers, J.N.P., Warnich, L. et al. Lack of clinical manifestation of hereditary haemochromatosis in South African patients with multiple sclerosis. Metab Brain Dis 21, 105–116 (2006). https://doi.org/10.1007/s11011-006-9015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9015-4

Keywords

Navigation