Skip to main content
Log in

Amino Acid Challenge in Patients with Cirrhosis and Control Subjects: Ammonia, Plasma Amino Acid and EEG Changes

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Background/aims: The pathogenesis of hepatic encephalopathy (HE) is controversial. We have therefore studied the effect of induced hyperammonaemia in man. Patients and methods: 108 g of an amino acid mixture was given orally to 18 cirrhotics and 11 control subjects and changes in blood ammonia, EEG and plasma amino acids were observed. Results: Basal (39±6 versus 14±2 μmol/l) and 120-min post amino acid (77±10 versus 27±4) blood ammonia concentrations in cirrhotics were significantly increased compared to healthy controls (p < 0.001). Associated with these changes there was a significant increase in the ratio of slow-to-fast wave activity indicating EEG slowing (+0.41±0.16; N=13 versus −0.05±0.08; N=8; p=0.036). As expected in cirrhotics, basal valine and leucine concentrations were decreased while phenylalanine, tyrosine and methionine were significantly increased. Although the basal molar ratio of branched chain amino acids to the aromatic amino acids phenylalanine and tyrosine was significantly decreased in cirrhotics (1.5±0.2 versus 3.2±0.2; p < 0.0001), after the challenge when EEG changes were apparent in cirrhotics, the ratio significantly increased (p < 0.005) in both groups to 2.7±0.3 versus 4.1±0.3 (p=0.002). In the combined groups, there were significant correlations between EEG ratio change and the 120-min blood ammonia concentration (r=0.498; p=0.022). Conclusion: The alterations in plasma amino acid patterns do not support a specific role for any of the amino acid groups in the pathogenesis of hepatic encephalopathy. They are however more in keeping with the direct or indirect role of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Mardini H, Harrison EJ, Ince PG, Bartlett K, Record CO (1993) Brain indoles in human hepatic encephalopathy. Hepatology 17:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Al Mardini H, Leonard J, Bartlett K, Lloyd S, Record CO (1988) Effect of methionine loading and endogenous hypermethioninaemia on blood mercaptans in man. Clin Chim Acta 176:83–90

    Article  PubMed  CAS  Google Scholar 

  • Amodio P, Marchetti P, Del Piccolo F, Campo G, Rizzo C, Lemmolo R et al. (1998) Visual attention in cirrhotic patients: A study on covert visual attention orienting. Hepatology 27:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Balata S, Olde Damink SW, Ferguson K, Marshall I, Hayes PC, Deutz NE et al. (2003) Induced hyperammonemia alters neuropsychology, brain MR spectroscopy and magnetisation transfer in cirrhosis. Hepatology 37:931–939

    Article  PubMed  CAS  Google Scholar 

  • Basile A, Jones EA (1997) Ammonia and GABA-ergic neurotransmission: Interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology 25:1303–1305

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (1997) Hepatic encephalopathy and brain oedema in acute hepatic failure: Does glutamate play a role? Hepatology 25:1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–645

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL (1990) Ammonia metabolism in normal and portacaval shunted rats. Adv Exp Med Biol 272:23–46

    PubMed  CAS  Google Scholar 

  • Cordoba S, Blei A (1997) Treatment of hepatic encephalopathy. Am J Gastroenterol 92:1429–1439

    PubMed  CAS  Google Scholar 

  • Deutz NEP, Dejong C, Soeters P (1996) Inter-organ ammonia and glutamine exchange during liver failure. In: Record CO, Al-Mardini HA (eds) Advances in hepatic encephalopathy and metabolism in liver disease. Medical Faculty, University of Newcastle Upon Tyne, UK, pp 87–99 (ISBN 0947 678115).

  • Douglass A, Al Mardini H, Oppong K, Record CO (2003) An oral tryptophan challenge in cirrhotic patients: A psychometric and analysed EEG study. Metab Brain Dis 18:179–186

    Article  PubMed  CAS  Google Scholar 

  • Douglass A, Al Mardini H, Record C (2001) Amino acid challenge in patients with cirrhosis: A model for the assessment of treatments for hepatic encephalopathy. J Hepatol 34:658–664

    Article  PubMed  CAS  Google Scholar 

  • Fahey JL (1957) Toxicity and blood ammonia rise resulting from intravenous amino acid administration in man: The protective effect of arginine. J Clin Invest 36:1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Groeneweg M, Quero JC, De Bruijn I, Hartmann C, Essink-bot M, Hop WC et al. (1998) Subclinical encephalopathy impairs daily functioning. Hepatology 28:45–49

    Article  PubMed  CAS  Google Scholar 

  • Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl-d-aspartate receptors in rat brain in vivo following acute ammonia intoxication: Characterisation by in vivo brain microdialysis. Hepatology 31:709–715

    Article  PubMed  CAS  Google Scholar 

  • Jalan R, Kapoor D (2003) Enhanced renal ammonia excretion following volume expansion in patients with well compensated cirrhosis of the liver. Gut 52:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Jalan R, Olde Damink SWM, Lui HF, Glabus M, Deutz NEP, Hayes PC et al. (2003) Oral amino acid load mimicking haemoglobin results in reduced regional cerebral perfusion and deterioration in memory tests in patients with cirrhosis of the liver. Met Brain Dis 18:37–49

    Article  CAS  Google Scholar 

  • Jalan R, Seery JP, Taylor Robinson SD (1996) Pathogenesis and treatment of chronic hepatic encephalopathy. Aliment Pharmacol Ther 10:681–697

    Article  PubMed  CAS  Google Scholar 

  • Kromhout J, McClain CJ, Zieve L, Doizaki WM, Gilberstadt S (1980) Blood mercaptan and ammonia concentrations in cirrhotics after a protein load. Am J Gastroenterol 74:507–511

    PubMed  CAS  Google Scholar 

  • Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE et al. (1979) The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 63:449–460

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH, Yap EW, Wong WH (1991) Cerebral ammonia metabolism in patients with severe liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 11:337–341

    PubMed  CAS  Google Scholar 

  • Masini A, Efrati C, Merli M, Attili A, Amodio P, Riggio O (1999) Effect of lactitol on blood ammonia in response to oral glutamine challenge in cirrhotic patients: Evidence for an effect of non-absorbable disaccharides on small intestinal ammonia generation. Am J Gastroenterol 94:3323–3327

    Article  PubMed  CAS  Google Scholar 

  • Meijer AJ, Lamers WH, Chamuleau RAFM (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70:701–748

    PubMed  CAS  Google Scholar 

  • Morgan MY, Milsom JP, Sherlock S (1978) Plasma ratio of valine, leucine and isoleucine to phenylalanine and tyrosine in liver disease. Gut 19:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Mullen KD (2003) Pathogenesis of hepatic encephalopathy. In: Jones EA, Meijer AJ, Chamuleau R (eds) Encephalopathy and nitrogen metabolism in liver failure. Kluwer, Dordrecht, pp 177–183

    Google Scholar 

  • Nicolao F, Efrati C, Masini A, Merli M, Attili AF, Riggio O (2003) Role of determination of partial pressure of ammonia in cirrhotic patients with and without hepatic encephalopathy. J Hepatol 38:441–446

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink SW, Dejong CH, Deutz NE, Soeters PB (1997) Decreased plasma and tissue isoleucine levels after simulated gastrointestinal bleeding by blood gavages in chronic portacaval shunted rats. Gut 40:418–424

    PubMed  CAS  Google Scholar 

  • Olde Damink SW, Dejong CH, Deutz NE, van Berlo CLH, Soeters PB (1999) Upper gastrointestinal bleeding: An ammoniagenic and catabolic event due to the total absence of isoleucine in the haemoglobin molecule. Med Hypotheses 52:515–519

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink SWM, Jalan R, Deutz NEP, Redhead DN, Dejong CHC, Hynds P et al. (2003) The kidney places a major role in the hyperammonaemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 37:1277–1285

    Article  PubMed  Google Scholar 

  • Olde Damink SWM, Jalan R, Redhead DN, Hayes PC, Deutz NEP, Soeters PB (2002) Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F et al. (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193

    Article  PubMed  CAS  Google Scholar 

  • Oppong KN, Al-Mardini H, Thick M, Record CO (1997) Oral glutamine challenge in cirrhotics pre- and post-liver transplantation: A psychometric and analysed EEG study. Hepatology 26:870–876

    Article  PubMed  CAS  Google Scholar 

  • Oppong KNW, Bartlett K, Record CO, Al Mardini H (1995) Synaptosomal glutamate transport in thioacetamide-induced hepatic encephalopathy in the rat. Hepatology 22:553–558

    PubMed  CAS  Google Scholar 

  • Prior PF, Maynard DE (1986) Monitoring cerebral function. Long term monitoring of EEG and evoked potentials. Elsevier, Amsterdam

    Google Scholar 

  • Pugh RNH, Murray Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Brit J Surg 60:646–648

    Article  PubMed  CAS  Google Scholar 

  • Quero JC, Hartmann IJC, Meulstee J, Hop WCJ, Schalm SW (1996) The diagnosis of subclinical hepatic encephalopathy in patients with cirrhosis using neuropsychological tests and automated electroencephalogram analysis. Hepatology 24:556–560

    Article  PubMed  CAS  Google Scholar 

  • Rao VL, Audet RM, Butterworth RF (1995) Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: Results of an in vivo microdialysis study. J Neurochem 65:1221–1228

    PubMed  CAS  Google Scholar 

  • Record CO (1991) Neurochemistry of hepatic coma. Gut 32:1261–1263

    Article  PubMed  CAS  Google Scholar 

  • Rees CJ, Oppong K, Al-Mardini H, Hudson M, Rose J, Record CO (2000) The effect of l-ornithine l-aspartate on patients with and without TIPS undergoing glutamine challenge: A double blind placebo controlled trial. Gut 47:571–574

    Article  PubMed  CAS  Google Scholar 

  • Riggio O, Efrati C, Masini A, Angeloni S, Merli M (2003) Is hyperammonemia really the true cause of altered neurospsychology, brain MMR spectroscopy and magnetisation transfer after an oral amino acid load in cirrhosis? Hepatology 38:777

    Article  PubMed  Google Scholar 

  • Riodan SM, Williams R (1997) Treatment of hepatic encephalopathy. N Eng J Med 337:473–479

    Article  Google Scholar 

  • Staedt U, Leweling H, Gladisch R, Kortsik C, Hagmuller E, Holm E (1993) Effects of ornithine aspartate on plasma ammonia and plasma amino acids in patients with cirrhosis. A double-blind, randomised study using a four-fold crossover design. J Hepatol 19:424–430

    Article  PubMed  CAS  Google Scholar 

  • Zieve L, Lyftogt C, Raphael D (1986) Ammonia toxicity: Comparative protective effect of various arginine and ornithine derivatives, aspartate, benzoate and carbamyl glutamate. Metab Brain Dis 1:25–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the late Dame Catherine Cookson. Mr. J. Gilroy produced the amino acid mixture, Dr. S.T. Kometa and Mr. A. Davidson assisted with the statistical and EEG analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Record.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardini, H.A., Douglass, A. & Record, C. Amino Acid Challenge in Patients with Cirrhosis and Control Subjects: Ammonia, Plasma Amino Acid and EEG Changes. Metab Brain Dis 21, 1–10 (2006). https://doi.org/10.1007/s11011-006-9006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9006-5

Keywords

Navigation