Skip to main content
Log in

Citrulline and Ammonia Accumulating in Citrullinemia Reduces Antioxidant Capacity of Rat Brain In Vitro

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Citrullinemia is an inborn error of the urea cycle caused by deficient argininosuccinate synthetase, which leads to accumulation of L-citrulline and ammonia in tissues and body fluids. The main symptoms include convulsions, tremor, seizures, coma, and brain edema. The pathophysiology of the neurological signs of citrullinemia remains unclear. In this context, we investigated the in vitro effects of L-citrulline and ammonia in cerebral cortex from 30-day-old rats on oxidative stress parameters, namely thiobarbituric acid-reactive substances (TBA-RS), chemiluminescence, mitochondrial membrane protein thiol content, intracellular content of hydrogen peroxide, total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) as well as on the activities of the antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase). L-Citrulline significantly diminished TRAP (26%) and TAR (37%), while ammonia decreased TAR (30%). Ammonia increased SOD activity (65%) and L-citrulline did not affect the activities of any antioxidant enzymes. We also observed that L-citrulline and ammonia did not alter lipid peroxidation parameters, levels of hydrogen peroxide, and mitochondrial membrane protein thiol content. Taken together, these results may indicate that L-citrulline and ammonia decreased the antioxidant capacity of the brain, which may reflect a possible involvement of oxidative stress in the neuropathology of citrullinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABAP:

2,2′-azo-bis-(2-amidinopropane)

CAT:

catalase

DCF:

2′,7′-dichlorofluorescin

DCFH-DA:

2′-7′-dichlorofluorescin diacetate

DTNB:

5,5′-dithio-bis-(2-nitrobenzoic acid)

GSH:

reduced glutathione

GSH-Px:

glutathione peroxidase

SOD:

superoxide dismutase

TAR:

total antioxidant reactivity

TBA-RS:

thiobarbituric acid-reactive substances

TRAP:

total radical-trapping antioxidant potential

References

  • Aebi H (1984) Catalase. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  • Brusilow SW, Horwich AL (2001) Urea cycle enzymes. The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  • Clancy RR, Chung HJ (1991) EEG changes during recovery from acute severe neonatal citrullinemia. Electroencephalogr Clin Neurophysiol 78:222–227

    Article  PubMed  CAS  Google Scholar 

  • Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria. J Biol Chem 245:4724–4731

    PubMed  CAS  Google Scholar 

  • Danbold NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  Google Scholar 

  • Dodd PR, Williams SH, Gundlach AL, Harper PAW, Healy PJ, Dennis JA, Johnston GAR (1992) Glutamate and γ-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J Neurochem 59:582–590

    Article  PubMed  CAS  Google Scholar 

  • Eadie MJ, Tyrer JH (1983) Biochemical Neurology. MTP Press, Lancaster, pp 60–78

    Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    PubMed  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  • Garcia MV, López-Mediavilla C, Juanes de la Peña MC, Medina JM (2004) Antioxidant defence of the neonatal rat brain against acute hyperammonemia. Brain Res 1001:159–163

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Iijima M, Jalil MDA, Begum L, Yasuda T, Yamaguchi N, Li MX, Kawada N, Endou H, Kobayashi K, Saheki T (2001) Pathogenesis of adult-onset type II citrullinemia caused by deficiency of citrin, a mitochondrial solute carrier protein: Tissue and subcellular localization of citrin. Adv Enzyme Regul 41:325–342

    Article  PubMed  CAS  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  PubMed  CAS  Google Scholar 

  • Kobayshi K, Kakinoki H, Fukushige T, Shaheen N, Terazono H, Saheki T (1995) Nature and frequency of mutations in the argininosuccinate synthetase gene that cause classical citrullinemia. Hum Genet 96:454–463

    Google Scholar 

  • Kobayshi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JP, Yasuda T, Ikeda S, Hirano R, Terazono H, Crackower MA, Kondo I, Tsui LC, Scherer SW, Saheki T (1999) The gene mutated in adult-onset type II citrullinemia encodes a putative mitochondrial carrier protein. Nat Genet 22:159–163

    Article  CAS  Google Scholar 

  • Kosenko E, Kaminski Y, Kaminski A, Valencia M, Lee L, Hermegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 27:637–644

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Kaminski Y, Lopata O, Muravyov N, Felipo V (1999) Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic Biol Med 26:1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981:193–200

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowoski AJ, Vercesi AE, Castilho RF (1997) Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: Correlation mitochondrial permeability transition. Biochim Biophys Acta 1318:395–402

    Article  Google Scholar 

  • Lissi E, Caceres T, Videla LA (1986) Visible chemiluminescence from rat homogenates undergoing autoxidation. Effect of additives and products accumulation. Free Radic Biol Med 2:63–69

    CAS  Google Scholar 

  • Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2′-azo-bis-(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  PubMed  CAS  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158

    Article  PubMed  CAS  Google Scholar 

  • Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249

    PubMed  CAS  Google Scholar 

  • Llesuy SF, Evelson P, González-Flecha B, Peralta J, Carreras MC, Poderoso JJ, Boveris A (1994) Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med 16:445–451

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Marklund S (1985) Pyrogallol autoxidation. Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  • Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Characterization of 2′-7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: Estimation on intracellular content of hydrogen peroxide. Brain Res 635:113–117

    Article  PubMed  CAS  Google Scholar 

  • Reznick AZ, Packer L (1993) Free radicals and antioxidants in muscular and neurological disease and disorders. In: Free radicals: From basic science to medicine. Birkhäuser Velarg, Basel, pp 425–437

    Google Scholar 

  • Sah R, Galeffi F, Ahrens R, Jordan G, Schwartz-Bloom RD (2002) Modulation of the GABAA gated chloride channel by reactive oxygen species. J Neurochem 80:383–391

    Article  PubMed  CAS  Google Scholar 

  • Saheki T, Kobayshi K, Inoue I (1987) Hereditary disorders of the urea cycle in man: Biochemical and molecular approaches. Rev Physiol Biochem Pharmacol 108:21–68

    Article  PubMed  CAS  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by grants from CNPq, FAPERGS, PROPESQ/UFRGS, and PRONEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Severo Dutra-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestes, C.C., Sgaravatti, A.M., Pederzolli, C.D. et al. Citrulline and Ammonia Accumulating in Citrullinemia Reduces Antioxidant Capacity of Rat Brain In Vitro . Metab Brain Dis 21, 61–72 (2006). https://doi.org/10.1007/s11011-006-9005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9005-6

Keywords

Navigation