Skip to main content
Log in

Role of Phosphate-Activated Glutaminase in the Pathogenesis of Hepatic Encephalopathy

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Disturbed body nitrogen homeostasis due to impaired hepatic urea synthesis leads to an alteration in interorgan ammonia trafficking, resulting in hyperammonemia. Glutamine (Gln) synthase is the alternative pathway for ammonia detoxification. Gln taken up by several organs is split by the intramitochondrial phosphate-activated enzyme glutaminase (PAG) into glutamate (Glu) and ammonia. In cirrhotic patients with portosystemic intrahepatic shunt, the main source of systemic hyperammonemia is the small intestine, and ammonia derives mainly from Gln deamidation. Recently, PAG has been found increased in cirrhotics showing minimal hepatic encephalopathy and, therefore, could be implicated in the production of systemic hyperammonemia in these patients. Intestinal PAG activity correlates with psychometric test and magnetic resonance spectroscopy findings. Moreover, nitric oxide and tumor necrosis factor seem to be the major factors regulating intestinal ammonia production in cirrhotics. In the brain, PAG localized into the astrocytes is responsible for ammonia and free-radical production. The blockade of PAG, using 6-oxo-5-norleucine, avoids the toxic effects of Gln accumulation in the brain. These data support an important role for intestinal and brain glutaminase in the pathogenesis of hepatic encephalopathy and could be a new target for future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, J., and Dolinska, M. (2001). Glutamine as a pathogenic factor in hepatic encephalopathy. J. Neurosci. Res. 65:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Balata, S., Damink, S.W., Ferguson, K., Marshall, I., Hayes, P.C., Deutz, N.E., Williams, R., Wardlaw, J., and Jalan, R. (2003). Induced hyperammonemia alters neuropsychology, brain MR spectroscopy and magnetization transfer in cirrhosis. Hepatology 37:931–939.

    Article  PubMed  CAS  Google Scholar 

  • Corvera, S., and Garcia-Sainz, J.A. (1983). Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagons. Biochem. J. 210:957–960.

    PubMed  CAS  Google Scholar 

  • Curthoys, N.P., and Watford, M. (1995). Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15:133–159.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, N., Ashida, H., Kotoura, Y., Nishioka, A., Nishiwaki, M., and Utsunomiya, J. (1993). Analysis of hepatic encephalopathy after distal splenorenal shunt—PTP image and pancreatic hormone kinetics. Hepatogastroenterology 40:360–364.

    PubMed  CAS  Google Scholar 

  • Hawkins, R.A., Jessy, J., Mans, A.M., Chedid, A., and DeJoseph, M.R. (1994). Neomycin reduces the intestinal production of ammonia from glutamine. Adv. Exp. Med. Biol. 368:125–134.

    PubMed  CAS  Google Scholar 

  • Jalan, R., and Kapoor, D. (2004). Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin. Sci. (Lond.) 106:467–474.

    CAS  Google Scholar 

  • James, L.A., Lunn, P.G., and Elia, M. (1988). Glutamine metabolism in the gastrointestinal tract of the rat assessed by the relative activity of gutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2). Br. J. Nutr. 79:365–372.

    Google Scholar 

  • James, L.A., Lunn, P.G., Middleton, S., and Elia, M. (1998). Distribution of glutaminase and glutamine synthetase activities in the human gastrointestinal tract. Clin Sci. 94:313–319.

    PubMed  CAS  Google Scholar 

  • Jayakumar, A.R., Rama Rao, K.V., Schousboe, A., and Norenberg, M.D. (2004). Glutamine-induced free radical production in cultured astrocytes. Glia 46:296–301.

    Article  PubMed  Google Scholar 

  • Jover, M., Díaz, D., Collantes-de-Terán, L., Córpas, R., Fontiveros, E., Parrado, J., Bautista, J.D., and Romero-Gómez, M. (2005). Glutaminase activity is implicated in the pathogenesis of hyperammonemia in porto-caval shunted rats. J. Hepatol. 42(Suppl. 1):168A.

    Google Scholar 

  • Kosenko, E., Llansola, M., Montoliu, C., Monfort, P., Rodrigo, R., Hernandez-Viadel, M., Erceg, S., Sanchez-Perez, A.M., and Felipo, V. (2003). Glutamine synthetase activity and glutamine content in brain: Modulation by NMDA receptors and nitric oxide. Neurochem. Int. 43:493–499.

    Article  PubMed  CAS  Google Scholar 

  • McCauley, R., Kong, S.E., Heel, K., and Hall, J.C. (1999). The role of glutaminase in the small intestine. Int. J. Biochem. Cell Biol. 31:405–413.

    Article  PubMed  CAS  Google Scholar 

  • Nance, F.C., and Kline, D.G. (1971). Eck's fistula encephalopathy in germ-free dogs. Ann. Surg. 174:856–861.

    PubMed  CAS  Google Scholar 

  • Norenberg, M.D. (1977). A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab. Invest. 36:618–627.

    PubMed  CAS  Google Scholar 

  • Norenberg, M.D., Rama Rao, K.V., and Jayakumar, A.R. (2004). Ammonia neurotoxicity and the mitochondrial permeability transition. J. Bioenerg. Biomembr. 36:303–307.

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink, S.W., Jalan, R., Redhead, D.N., Hayes, P.C., Deutz, N.E., and Soeters, P.B. (2002). Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36:1163–1171.

    Article  PubMed  Google Scholar 

  • Oppong, K.N., Al-Mardini, H., Thick, M., and Record, C.O. (1997). Oral glutamine challenge in cirrhotics pre- and post-liver transplantation: A psychometric and analysed EEG study. Hepatology 26:870–876.

    PubMed  CAS  Google Scholar 

  • Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2003). Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem. Int. 43:517–523.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Gómez, M., Bautista, J.D., Grande, L., Ramos Guerrero, R.M., and Sanchez Munoz, D. (2004a). New concepts in the physiopathology of hepatic encephalopathy and therapeutic prospects. Gastroenterol. Hepatol. 27(Suppl. 1):40–48.

    Google Scholar 

  • Romero-Gomez, M., Grande, L., and Camacho, I. (2004b). Prognostic value of altered oral glutamine challenge in patients with minimal hepatic encephalopathy. Hepatology 39:939–943.

    Google Scholar 

  • Romero-Gómez, M., Grande, L., Camacho, I., Benitez, S., Irles, J.A., and Castro, M. (2002). Altered response to oral glutamine challenge as prognostic factor for overt episodes in patients with minimal hepatic encephalopathy. J. Hepatol. 85:871–877.

    Google Scholar 

  • Romero-Gómez, M., Hoyas, E., Viloria, M.M., Jover, M., Córpas, R., Collantes-de-Terán, L., Camacho, I., Cruz, M., and Bautista, J.D. (2005). Oral glutamine challenge response is regulated by portal hypertension and systemic inflammatory response. J. Hepatol. 42(Suppl. 1):182A.

    Google Scholar 

  • Romero-Gomez, M., Ramos-Guerrero, R., Grande, L., de Teran, L.C., Corpas, R., Camacho, I., and Bautista, J.D. (2004c). Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J. Hepatol. 41:49–54.

    CAS  Google Scholar 

  • Sherlock, S. (1987). Chronic portal-systemic encephalopathy: Update 1987. Gut 28:1043–1048.

    PubMed  CAS  Google Scholar 

  • Taylor, L., Liu, X., Newsome, W., Shapiro, R.A., Srinivasan, M., and Curthoys, N.P. (2001). Isolation and characterization of the promoter region of the rat kidney-type glutaminase gene. Biochim. Biophys. Acta 1518:132–136.

    PubMed  CAS  Google Scholar 

  • Warren, K.S., and Newton, W.L. (1959). Portal and peripheral blood ammonia concentrations in germ-free and conventional guinea pigs. Am. J. Physiol. 197:717–720.

    PubMed  CAS  Google Scholar 

  • Weber, F.J.L., and Veach, G.L. (1979). The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 77:235–240.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Romero-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero-Gómez, M. Role of Phosphate-Activated Glutaminase in the Pathogenesis of Hepatic Encephalopathy. Metab Brain Dis 20, 319–325 (2005). https://doi.org/10.1007/s11011-005-7913-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-005-7913-5

Keywords

Navigation