Skip to main content
Log in

Ovariectomy Enhances Acetylcholinesterase Activity But Does Not Alter Ganglioside Content in Cerebral Cortex of Female Adult Rats

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

In the present work we investigated the effect of ovariectomy on acetylcholinesterase (AChE) activity and ganglioside content in cerebral cortex of female rats. We also studied the activity of butyrylcholinesterase (BuChE) in serum of these animals. Adult Wistar rats were divided into three groups: (1) naive females (control), (2) sham-operated females and (3) castrated females (ovariectomy). Thirty days after ovariectomy, rats were sacrificed by decapitation without anaesthesia. Blood was collected and the serum used for BuChE determination. Cerebral cortex was homogenized to determine AChE activity and extracted with chlorophorm:methanol for ganglioside evaluation. Results showed that rats subjected to ovariectomy presented a significant increase of AChE activity, but did not change the content and the profile of gangliosides in cerebral cortex when compared to sham or naive rats. BuChE activity was decreased in serum of rats ovariectomized. Our findings suggest that the alteration in the activity of brain AChE, as well as serum BuChE activity caused by ovariectomy may contribute to the impaired cognition and/or other neurological dysfunction found in post-menopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, A., Opazo, C., Alarcon, R., Garrido, J., and Inestrosa, N.C. (1997). Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol. 272:348–361.

    Article  CAS  PubMed  Google Scholar 

  • Ando, S. (1983). Gangliosides in the nervous system. Neurochem. Int. 5:507–537.

    Article  CAS  Google Scholar 

  • Arendt, T., Bruckner, M.K., Lange, M., and Bigl, V. (1992). Changes in acetylcholinesterase and butyrylcholinesterase in Alzeimer’s disease resemble embryonic development –-A study of molecular forms. Neurochem. Int. 21:381–396.

    Article  CAS  PubMed  Google Scholar 

  • Bonnefont, A.B., Munoz, F.J., and Inestrosa, N.C. (1998). Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes. FEBS Lett. 441:220–224.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. (1976). A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-die-binding. Anal. Biochem. 72:248–254.

    CAS  PubMed  Google Scholar 

  • Brinton, R.D. (2001). Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer’s disease: Recent insights and remaining challenges. Learn. Mem. 8:121–133.

    Article  CAS  PubMed  Google Scholar 

  • Calderón, F.H., Von Bernhardi, R., De Ferrari, G., Luza, S., Aldunate, R., and Inestrosa, N.C. (1998). Toxic effects of acetylcholinesterase on neuronal and glial-like cells in vitro. Mol. Psychiatry 3:247–255.

    Article  PubMed  Google Scholar 

  • Cummings, J.L. (2000). The role of cholinergic agents in the management of behavioral disturbances in Alzheimer’s disease. Int. J. Neuropsychopharmacol. 3:21–29.

    Article  PubMed  Google Scholar 

  • Davies, P., and Maloney, A.J. (1976). Selective loss of central cholinergic neurons in Alzeimer’s disease. Lancet 2:1403.

    Article  CAS  Google Scholar 

  • DeKosky, S.T., and Bass, N.H. (1982). Aging, senile dementia, and the intralaminar microchemistry of cerebral cortex. Neurology 32:1227–1233.

    CAS  PubMed  Google Scholar 

  • Dubal, D.B., Shughrue, P.J., Wilson, M.E., Merchenthaler, I., and Wise, P.M. (1999). Estradiol modulates Bcl-2 in cerebral ischemia: A potencial role for estrogen receptors. J. Neurosci. 19:6385–6393.

    CAS  PubMed  Google Scholar 

  • Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M. (1961). A new and rapid determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:21–29.

    Article  Google Scholar 

  • Enz, A., Amstutz, R., Boddeke, H., Gmelin, G., and Malanowski, J. (1993). Brain selective inhibition of acetylcholinesterase: A novel approach to therapy for Alzeimer’s Disease. Prog. Brain Res. 98:431–438.

    CAS  PubMed  Google Scholar 

  • Farooqui, A.A., Liss, L., and Horrocks, L.A. (1988). Stimulation of lipolytic enzymes in Alzeimer’s disease. Ann. Neurol. 23:306–308.

    Article  CAS  PubMed  Google Scholar 

  • Fillit, H. (1994). Estrogens in pathogenesis and treatment of Alzeimer’s disease in postmenopausal women. Ann. N. Y. Acad. Sci. 743:233–239.

    CAS  PubMed  Google Scholar 

  • Fishman, E.B., Siek, G.C., MacCallum, R.D., Bird, E.D., Volicer, L., and Marqui, J.K. (1986). Distribution of the molecular forms of acetylcholinesterase in human brain: Alterations in dementia of the Alzheimer type. Ann. Neurol. 19:246–252.

    Article  CAS  PubMed  Google Scholar 

  • Fossi, M.C., Leonzio, C., Massi, A., Lari, L., and Casini, S. (1992). Serum esterase inhibition in birds: A nondestructive biomarker to assess organophosphorus and carbamate contamination. Arch. Environ. Contam. Toxicol. 23:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Fredman, P. (1998). Sphingolipids and cell signalling. J. Inherit. Metab. Dis. 21:472–480.

    Article  CAS  PubMed  Google Scholar 

  • Gandy, S. (2003). Estrogen and Neurodegeneration. Neurochem. Res. 28:1003–1008.

    Article  CAS  PubMed  Google Scholar 

  • Giacobini, E., DeSarno, P., Clark, B., and McIlbany, M. (1989). The cholinergic receptor system of the human brain: Neurochemical and pharmacological aspects in aging and Alzeimer. Prog. Brain Res. 79:335–343.

    CAS  PubMed  Google Scholar 

  • Giacobini, E. (1997). From molecular structure to Alzheimer therapy. Jpn. J. Pharmacol. 74:225–241.

    CAS  PubMed  Google Scholar 

  • Gibbs, R.B., and Aggarwal, P. (1998). Estrogen and basal forebrain cholinergic neurons: Implications for brain aging and Alzheimer’s disease-related cognitive decline. Horm. Behav. 34:98–111.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Ramos, P., and Morán, M.A. (1997). Ultra structural localization of butyrylcholinesterase in senile plaques in the brains of aged and Alzheimer’s disease patients. Mol. Chem. Neuropathol. 30:161–173.

    PubMed  Google Scholar 

  • Grafius, M.A., Bond, H.E., and Millar, D.B. (1971). Acetylcholinesterase interaction with a lipoprotein matrix. Eur. J. Biochem. 22:382–390.

    Article  CAS  PubMed  Google Scholar 

  • Green, P.S., and Simpkins, J.W. (2000). Neuroprotective effects of estrogens: Potential mechanisms of action. Int. J. Devl. Neuroscience. 18:347–358.

    Article  CAS  Google Scholar 

  • Greig, N.H., Utsuki, T., Yu, Q., Zhu, X., Holloway, H.W., Perry, T., Lee, B., Ingram, D.K., and Lahiri, D.K. (2001). A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 17:159–165.

    Article  CAS  PubMed  Google Scholar 

  • Guillozet, A., Smiley, J.F., Mash, D.C., and Mesulam, M.M. (1997). Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 42:909–918.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, V.W., Watt, L., and Buckwalter, J.G. (1996). Cognitive skills associated with estrogen replacement in women with Alzeimer’s disease. Psychoneuroendocrinology 21:421–430.

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi, J., Kuroda, Y., Kosaka, S., and Fujiwara, M. (1998). L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol stimulates ganglioside biosynthesis, neurite outgrowth and synapse formation in cultured cortical neurons, and ameliorates memory deficits in ischemic rats. Acta Biochim. Pol. 45:479–492.

    CAS  PubMed  Google Scholar 

  • Islam, F., Hasan, M., and Saxena, K. (1986). Isolation and estimation of gangliosides in discrete regions of the forebrain: Effects of estrogen on regional lipid profiles. Exp. Pathol. 29:159–164.

    CAS  PubMed  Google Scholar 

  • Kampen, D.L., and Sherwin, B.B. (1994). Estrogen use and verbal memory in healthy postmenopausal. Obstet. Gynecol. 83:979–983.

    CAS  PubMed  Google Scholar 

  • Lake, B.D., and Goodwin, H.J. (1976). Lipids. In (I. Smith, and J.W.T. Seakins, eds.), Chromatographic and Eletrophoretic Techniques, Vol. 1. Paper and Thin Layer Chromatography William Heinemann Medical Books Ltd., London, UK, pp. 345–366.

    Google Scholar 

  • Law, A., Gauthier, S., and Quirion, R. (2001). Say NO Alzheimer’s disease: The putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res. Rev. 35:73–96.

    Article  CAS  PubMed  Google Scholar 

  • Lephart, E.D., Rhees, R.W., Setchell, K.D.R., Bu, L.H., and Lund, T.D. (2003). Estrogens and phytoestrogens: Brain plasticity of sexually dimorphic brain volumes. J. Steroid Biochem. Mol. Biol. 85:299–309.

    Article  CAS  PubMed  Google Scholar 

  • Liao, S., Chen, W., Kuo, J., and Chen, C. (2001). Association of serum estrogen level and ischemic neuroprotection in female rats. Neurosc. Lett. 297:159–162.

    Article  CAS  Google Scholar 

  • Maccioni, H.J.F., Panzetta, P., Arrieta, D., and Caputto, R. (1984). Ganglioside glycosil transferase activities in the cerebral hemispheres from developing rat embryos. Int. J. Develop. Neurosc. 2:13–19.

    Article  CAS  Google Scholar 

  • Mesulam, M., and Geula, C. (1994). Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 36:722–727.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M.-M., Guillozet, A., Shaw, P., Levey, A., Duysen, E.G., and Lockridge, O. (2002). Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze. acetylcholine. Neuroscience 110:627–639.

    Article  CAS  PubMed  Google Scholar 

  • Miettinen, T., and Takki-Luukkainen, I.T. (1959). Use of butyl acetate in determination of sialic acid. Acta Chem. Scand. 13:856–858.

    CAS  Google Scholar 

  • Nores, G.A., Mitzumari, R.K., and Kremer, D.M. (1994). Chromatographic tank designed to obtain highly reproducible high-performance thin-layer chromatograms of gangliosides and neutral glycosphingolipids. J. Chromatogr. 686:155–157.

    Article  CAS  Google Scholar 

  • Ohtani, Y., Tamai, Y., Ohnuki, Y., and Miura, S. (1996). Ganglioside alterations in the central and peripheral nervous systems of patients with Creutzfeldt-Jakob disease. Neurodegeneration 5:331–338.

    Article  CAS  PubMed  Google Scholar 

  • Rahmann, H. (1995). Brain gangliosides and memory formation. Behav. Brain Res. 66:105–116.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, M.R., Muraro, F., Zylbersztejn, D.S., Abel, C.R., Arteni, N.S., Lavinsky, D., Netto, C.A., and Trindade, V.M.T. (2003). Neonatal hypoxia-ischemia reduces ganglioside, phospholipid and cholesterol contents in the rat hippocampus. Neurosc. Res. 46:339–347.

    Article  CAS  Google Scholar 

  • Rodrigues, H.D., Kinder, J.E., and Fitzpatrick, L.A. (1999). Treatment with 17 beta-estradiol does not influence age and weight at puberty in Bos indicus heifers . Anim. Reprod. Sci. 56:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Roukema, P.A., and Heijlman, J. (1970). The regional distribution of sialoglycoproteins, gangliosides and sialidase in bovine brain. J. Neurochem. 17:773–780.

    CAS  PubMed  Google Scholar 

  • Saez-Valero, J., Gonzalez-Garcia, C., and Cena, V. (2003). Acetylcholinesterase activation in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. Neurosci. Lett. 48:123–125.

    Article  Google Scholar 

  • Sanhoff, K., and Van Echten, G. (1994). Metabolism of Gangliosides: Topology, Pathobiochemistry, and Sphingolipid Activator Proteins. Curr. Top. Membr. 40:75–91.

    Google Scholar 

  • Savonenko, A.V., and Markowska, A.L. (2003). The cognitive effects of ovariectomy and estrogen replacement are modulated by aging. Neuroscience 119:821–830.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, J.S. (1994). The therapeutic role of gangliosides in neurological disorders. CNS DRUGS 1:213–222.

    Google Scholar 

  • Schneider, J.S., Roeltgen, D.P., Mancall, E.L., Chapas-Crilly, J., Rothblat, D.S., and Tatarian, G.T. (1998). Parkinson’s disease: Improved function with GM1 ganglioside treatment in a randomized placebo-controlled study. Neurology 50:1630–1636.

    CAS  PubMed  Google Scholar 

  • Shughrue, P.J., and Merchenthaler, I. (2000). Estrogen is more than a “sex hormone”: Novel sites for estrogen action in the hippocampus and cerebral cortex. Front. Neuroendocrinol. 21:95–101.

    Article  CAS  PubMed  Google Scholar 

  • Simpkins, J.W., Green, P.S., Gridley, K.E., Singh, M., De Fiebre, N.C., and Rajakumar, G. (1997). Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease . Am. J. Med. 103:19S–25S.

    Article  CAS  Google Scholar 

  • Shumaker, S.A., Legault, C., Raap, S.R., Thal, L., Wallace, R.B., Ockene, J.K., Hendrix, S.L., Jones, B.N. 3rd, Assaf, A.R., Jackson, R.D., Kotchen, J.M., Wassertheil-Smoller, S., Wactawski-Wende, J.; WHIMS Investigators. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: A randomized controlled trial. JAMA 289:2651–2662.

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm, L. (1957). Quantitative estimation of sialic acids a colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta. 24:604–611.

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm, L. (1963). Chromatographic separation of human brain gangliosides. J. Neurochem. 10:613–623.

    CAS  PubMed  Google Scholar 

  • Tang, M.X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R. (1996). Effect of oestrogen during menopause on risk and age at onset of Alzeimer’s disease. Lancet 348:429–432.

    Article  CAS  PubMed  Google Scholar 

  • Trindade, V.M.T., Daniotti, J.L., Raimondi, L., Chazan, R., Netto, C.A., and Maccioni, H.J.F. (2001). Effects of neonatal hypoxia/ischemia on ganglioside expression in the rat hippocampus. Neurochem. Res. 26:591–597.

    Article  CAS  PubMed  Google Scholar 

  • Trindade, V.M.T., Brusque, A.M., Raasch, J.R., Pettenuzzo, L.F., Rocha, H.P., Wannmacher, C.M.D., and Wajner, M. (2002). Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab. Brain Dis. 17:93–102.

    Article  CAS  PubMed  Google Scholar 

  • Van Duijn, C.M. (1999). Hormone replacement therapy and Alzeimer’s disease. Maturitas 31(3):201–205.

    Article  CAS  PubMed  Google Scholar 

  • Villescas, R., Ostwald, R., Morimoto, H.D., and Bennett, E.L. (1981). Effects of neonatal undernutrition and cold stress on behavior and biochemical brain parameters in rats. J. Nutr. 111:1103–1110.

    CAS  PubMed  Google Scholar 

  • Waynforth, H.B., and Flecknell, P.A. (1992). Experimental and Surgical Technique in the Rat, Academic Press, London, 2nd ed, pp. 276–278.

    Google Scholar 

  • Wise, M.P., Dubal, D.B., Wilson, M.E., Rau, S.W., Böttner, M., and Rosewell, K.L. (2001a). Estradiol is a protective factor in the adult and aging brain: Understanding of mechanism derived from in vivo and in vitro studies. Brain Res. Rev. 37:313–319.

    Article  CAS  Google Scholar 

  • Wise, P.M., Dubal, D.B., Wilson, M.E., Rau, S.W., and Liu, Y. (2001b). Estrogens: Trophic and protective factors in the adult brain. Front. Neuroendocrinol 22:33–66.

    Article  CAS  Google Scholar 

  • Wise, P.M. (2002). Estrogens and neuroprotection. Trends Endocrinol. Metab. 13:229–230.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe, K., Sawaya, G., Lieberburg, I., and Grady, D. (1998). Estrogen therapy in postmenopausal women: Effects on cognitive function and dementia. JAMA 279:688–695.

    Article  CAS  PubMed  Google Scholar 

  • Younkin, S.G., Goodridge, B., Katz, J., Lockett, G., Nafziger, D., Usiak, M.F., and Younkin, L.H. (1986). Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed. Proc. 45:2982–2988.

    CAS  PubMed  Google Scholar 

  • Yu, R.K., and Ledeen, R.W. (1974). Ganglioside abnormalities in multiple sclerosis. J. Neurochem. 23:169–174.

    CAS  PubMed  Google Scholar 

  • Zeller, C.B., and Marchase, R.B. (1992). Gangliosides as modulators of cell function. Am. J. Physiol. 262:C1341–C1355.

    CAS  PubMed  Google Scholar 

  • Zhang, Y.Q., Shi, J., Rajakumar, G., Day, A.L., and Simpkins, J.W. (1998). Effects of gender and estradiol treatment on focal brain ischemia. Brain Res. 784:321–324.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Xu, H., Uljon, S.N., Gross, R., Hardy, K., Gaynor, J., Lafrançois, J., Simpkins, J., Refolo, L.M., Petanceska, S., Wang, R., and Duff, K. (2002). Modulation of A (beta) peptides by estrogen in mouse models. J. Neurochem. 80:191–196.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, S.C., Stefanello, F.M., Vianna, L.P. et al. Ovariectomy Enhances Acetylcholinesterase Activity But Does Not Alter Ganglioside Content in Cerebral Cortex of Female Adult Rats. Metab Brain Dis 20, 35–44 (2005). https://doi.org/10.1007/s11011-005-2474-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-005-2474-1

Keywords

Navigation