Skip to main content
Log in

LncRNA CCAT1 knockdown suppresses tongue squamous cell carcinoma progression by inhibiting the ubiquitination of PHLPP2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tongue squamous cell carcinoma (TSCC) is prevailing malignancy in the oral and maxillofacial region, characterized by its high frequency. LncRNA CCAT1 can promote tumorigenesis and progression in many cancers. Here, we investigated the regulatory mechanism by which CCAT1 influences growth and metastasis of TSCC. Levels of CCAT1, WTAP, TRIM46, PHLPP2, AKT, p-AKT, and Ki67 in TSCC tissues and cells were assessed utilizing qRT-PCR, Western blot and IHC. Cell proliferation, migration, and invasion were evaluated utilizing CCK8, colony formation, wound healing and transwell assays. Subcellular localization of CCAT1 was detected utilizing FISH assay. m6A level of CCAT1 was assessed using MeRIP. RNA immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP) and RNA pull down elucidated binding relationship between molecules. Nude mouse tumorigenesis experiments were used to verify the TSCC regulatory function of CCAT1 in vivo. Metastatic pulmonary nodules were observed utilizing hematoxylin and eosin (HE) staining. CCAT1 silencing repressed TSCC cell proliferation, migration and invasion. Expression of CCAT1 was enhanced through N6-methyladenosine (m6A) modification of its RNA, facilitated by WTAP. Moreover, IGF2BP1 up-regulated CCAT1 expression by stabilizing its RNA transcript. CCAT1 bond to PHLPP2, inducing its ubiquitination and activating AKT signaling. CCAT1 mediated the ubiquitination and degradation of PHLPP2 by TRIM46, thereby promoting TSCC growth and metastasis. CCAT1/TRIM46/PHLPP2 axis regulated proliferation and invasion of TSCC cells, implying that CCAT1 would be a novel therapeutic target for TSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DAPI:

4,6-Diamidino-2-phenylindole

CCK-8:

Cell counting kit-8

CST:

Cell signaling technology

Co-IP:

Co-immunoprecipitation

CCAT1:

Colon cancer-associated transcript-1

EMT:

Epithelial-mesenchymal transition

FISH:

Fluorescence in situ hybridization

FoxO1:

Forkhead box protein O1

HE staining:

Hematoxylin and eosin staining

IHC:

Immunohistochemistry

IGF2BP1:

Insulin-like growth factor 2 mRNA-binding protein 1

lncRNAs:

Long non-coding RNAs

MeRIP:

Methylated RNA immunoprecipitation

m6A:

N6-methyladenosine

ANOVA:

One-way analysis of variance

PHLPP:

PH domain and leucine rich repeat protein phosphatase

RIP:

RNA immunoprecipitation

SD:

Standard deviation

TRIM:

The E3-ligase tripartite motif

TSCC:

Tongue squamous cell carcinoma

TRIM46:

Tripartite motif containing 46

WTAP:

Wilms tumor 1-associated protein

References

  1. Melo BAC et al (2021) Human papillomavirus infection and oral squamous cell carcinoma - a systematic review. Braz J Otorhinolaryngol 87(3):346–352

    Article  PubMed  Google Scholar 

  2. Lenze NR et al (2020) Age and risk of recurrence in oral tongue squamous cell carcinoma: systematic review. Head Neck 42(12):3755–3768

    Article  PubMed  Google Scholar 

  3. Joshi P, Waghmare S (2023) Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: therapeutic implications and challenges. World J Stem Cells 15(5):438–452

    Article  PubMed  PubMed Central  Google Scholar 

  4. Matsuo K et al (2022) Squamous cell carcinoma of the tongue: subtypes and morphological features affecting prognosis. Am J Physiol Cell Physiol 323(6):C1611-c1623

    Article  CAS  PubMed  Google Scholar 

  5. Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and Classification of lncRNAs. Adv Exp Med Biol 1008:1–46

    Article  CAS  PubMed  Google Scholar 

  6. Chen J et al (2020) Progress in the study of long noncoding RNA in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 129(1):51–58

    Article  PubMed  Google Scholar 

  7. Guo X, Hua Y (2017) CCAT1: an oncogenic long noncoding RNA in human cancers. J Cancer Res Clin Oncol 143(4):555–562

    Article  CAS  PubMed  Google Scholar 

  8. Li GH, Ma ZH, Wang X (2019) Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt/β-catenin signaling pathway. Cell Cycle 18(21):2902–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun M, Shen Z (2020) Knockdown of long non-coding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) suppresses oral squamous cell carcinoma proliferation, invasion, and migration by inhibiting the discoidin domain receptor 2 (DDR2)/ERK/AKT Axis. Med Sci Monit 26:e920020

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang X et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zuo X et al (2020) M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 13(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rong D et al (2021) m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. Mol Ther Nucleic Acids 26:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan Q et al (2023) WTAP contributes to the tumorigenesis of osteosarcoma via modulating ALB in an m6A-dependent manner. Genomics. https://doi.org/10.1016/j.ygeno.2023.110566

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paramasivam A, George R, Priyadharsini JV (2021) Genomic and transcriptomic alterations in m6A regulatory genes are associated with tumorigenesis and poor prognosis in head and neck squamous cell carcinoma. Am J Cancer Res 11(7):3688–3697

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang X et al (2018) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 11(1):88

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cha JH et al (2021) Emerging roles of PHLPP phosphatases in metabolism. BMB Rep 54(9):451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen S et al (2019) miR-762 promotes malignant development of head and neck squamous cell carcinoma by targeting PHLPP2 and FOXO4. Onco Targets Ther 12:11425–11436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brognard J et al (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25(6):917–931

    Article  CAS  PubMed  Google Scholar 

  19. Peng M et al (2022) Programmed death-ligand 1 signaling and expression are reversible by lycopene via PI3K/AKT and Raf/MEK/ERK pathways in tongue squamous cell carcinoma. Genes Nutr 17(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hatakeyama S (2017) TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 42(4):297–311

    Article  CAS  PubMed  Google Scholar 

  21. Tantai J et al (2022) TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis 13(3):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu Z et al (2021) FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol Ther 29(9):2737–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Y et al (2020) A reciprocal feedback of Myc and lncRNA MTSS1-AS contributes to extracellular acidity-promoted metastasis of pancreatic cancer. Theranostics 10(22):10120–10140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cusenza VY et al (2023) The lncRNA epigenetics: the significance of m6A and m5C lncRNA modifications in cancer. Front Oncol 13:1063636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen C et al (2021) m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Front Oncol 11:746789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li CF et al (2017) miR-938 promotes colorectal cancer cell proliferation via targeting tumor suppressor PHLPP2. Eur J Pharmacol 807:168–173

    Article  CAS  PubMed  Google Scholar 

  27. Ding L et al (2017) MicroRNA-27a contributes to the malignant behavior of gastric cancer cells by directly targeting PH domain and leucine-rich repeat protein phosphatase 2. J Exp Clin Cancer Res 36(1):45

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liao Y et al (2016) MiR-760 overexpression promotes proliferation in ovarian cancer by downregulation of PHLPP2 expression. Gynecol Oncol 143(3):655–663

    Article  CAS  PubMed  Google Scholar 

  29. Kim K et al (2017) Degradation of PHLPP2 by KCTD17, via a glucagon-dependent pathway. Promotes Hepatic Steatosis Gastroenterol 153(6):1568-1580.e10

    CAS  Google Scholar 

  30. Liu L et al (2022) MARCH1 silencing suppresses growth of oral squamous cell carcinoma through regulation of PHLPP2. Clin Transl Oncol 24(7):1311–1321

    Article  CAS  PubMed  Google Scholar 

  31. Lin Y et al (2022) A narrative review on machine learning in diagnosis and prognosis prediction for tongue squamous cell carcinoma. Transl Cancer Res 11(12):4409–4415

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mohideen K et al (2019) Meta-analysis on risk factors of squamous cell carcinoma of the tongue in young adults. J Oral Maxillofac Pathol 23(3):450–457

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu Z, Zhao P, Xu H (2020) Hyperoside exhibits anticancer activity in non-small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol Rep 43(2):617–624

    CAS  PubMed  Google Scholar 

  34. Xing L et al (2019) Silencing FOXO1 attenuates dexamethasone-induced apoptosis in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 513(4):1019–1026

    Article  CAS  PubMed  Google Scholar 

  35. Li X et al (2020) Knockdown of lncRNA CCAT1 enhances sensitivity of paclitaxel in prostate cancer via regulating miR-24-3p and FSCN1. Cancer Biol Ther 21(5):452–462

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mu Y, Li N, Cui YL (2018) The lncRNA CCAT1 upregulates TGFβR1 via sponging miR-490-3p to promote TGFβ1-induced EMT of ovarian cancer cells. Cancer Cell Int 18:145

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang F et al (2022) LncRNA CCAT1 upregulates ATG5 to enhance autophagy and promote gastric cancer development by absorbing miR-140-3p. Dig Dis Sci 67(8):3725–3741

    Article  CAS  PubMed  Google Scholar 

  38. Wen H et al (2023) m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 22(1):100–116

    Article  CAS  PubMed  Google Scholar 

  39. Fan Y et al (2022) Role of WTAP in cancer: from mechanisms to the therapeutic potential. Biomolecules. https://doi.org/10.3390/biom12091224

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu F et al (2023) m6A methyltransferase, WTAP, promotes cancer progression in laryngeal squamous cell carcinoma by regulating PLAU stability. Ann Clin Lab Sci 53(2):293–302

    CAS  PubMed  Google Scholar 

  41. Yang H et al (2019) LncRNA THOR promotes tongue squamous cell carcinomas by stabilizing IGF2BP1 downstream targets. Biochimie 165:9–18

    Article  CAS  PubMed  Google Scholar 

  42. Huang H et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller S et al (2019) IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 47(1):375–390

    Article  PubMed  Google Scholar 

  44. Nowak DG et al (2019) The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J Cell Biol 218(6):1943–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harterink M et al (2019) TRIM46 organizes microtubule fasciculation in the axon initial segment. J Neurosci 39(25):4864–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L et al (2016) Mmu-miR-1894–3p inhibits cell proliferation and migration of breast cancer cells by targeting Trim46. Int J Mol Sci. https://doi.org/10.3390/ijms17040609

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by 2021 Doctoral Fund project of Hunan Provincial People’s Hospital [BSJJ202120], Fund project of Hunan Provincial Department of Finance [2022CZT02].

Author information

Authors and Affiliations

Authors

Contributions

Feng Liu: Conceptualization; Data Curation; Writing—Original Draft; Funding acquisition. Hanlin Yang: Methodology; Supervision; Xiongwei Liu: Formal analysis; Project administration; Yangbo Ning: Validation; Yiwei Wu: Investigation; Xinglan Yan: Resources; Huixi Zheng: Visualization; Chang Liu: Writing—Review & Editing.

Corresponding author

Correspondence to Feng Liu.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Ethical approval and consent to participate

Ethics Committee of Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University) approved all animal experiments conducted in this study [2022–160].

Consent for publication

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2024_5004_MOESM1_ESM.tif

Supplementary file1 (TIF 8040 KB)— (A) SRAMP predicted potential m6A site of CCAT1. (B) NEDD4, SMURF1 and NEDD4L are potential ubiquitinases of PHLPP2 predicted by UbiBrowser 2.0. (C, D) catRAPID predicted the potential binding relationship between CCAT1 and TRIM46, PHLPP2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Yang, H., Liu, X. et al. LncRNA CCAT1 knockdown suppresses tongue squamous cell carcinoma progression by inhibiting the ubiquitination of PHLPP2. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-05004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-05004-1

Keywords

Navigation