Skip to main content
Log in

Current advances in human-induced pluripotent stem cell-based models and therapeutic approaches for congenital heart disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Congenital heart disease (CHD) represents a significant risk factor with profound implications for neonatal survival rates and the overall well-being of adult patients. The emergence of induced pluripotent stem cells (iPSCs) and their derived cells, combined with CRISPR technology, high-throughput experimental techniques, and organoid technology, which are better suited to contemporary research demands, offer new possibilities for treating CHD. Prior investigations have indicated that the paracrine effect of exosomes may hold potential solutions for therapeutic intervention. This review provides a summary of the advancements in iPSC-based models and clinical trials associated with CHD while elucidating potential therapeutic mechanisms and delineating clinical constraints pertinent to iPSC-based therapy, thereby offering valuable insights for further deliberation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Correction to: Genetic Basis for Congenital Heart Disease (2018) Revisited: a scientific statement from the american heart association. Circulation 138(21):e713. https://doi.org/10.1161/CIR.0000000000000631

    Article  Google Scholar 

  2. Zhang J, Guan J, Niu X et al (2015) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 1(13):49. https://doi.org/10.1186/s12967-015-0417-0.PMID:25638205;PMCID:PMC4371881

    Article  Google Scholar 

  3. Baumgartner H, De Backer J, Babu-Narayan SV et al (2021) 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J 42(6):563–645. https://doi.org/10.1093/eurheartj/ehaa554

    Article  CAS  PubMed  Google Scholar 

  4. Zhou L, Liu J, Xiang M et al (2017) Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation. Proc Natl Acad Sci USA 114(8):E1422–E1431. https://doi.org/10.1073/pnas.1605137114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ang YS, Rivas RN, Ribeiro AJS et al (2016) Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167(7):1734-1749.e22. https://doi.org/10.1016/j.cell.2016.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye L, Yu Y, Zhao ZA et al (2022) Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect. Cardiovasc Res 118(3):859–871. https://doi.org/10.1093/cvr/cvab154

    Article  CAS  PubMed  Google Scholar 

  7. Yang B, Zhou W, Jiao J et al (2017) Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat Commun 8:15481. https://doi.org/10.1038/ncomms15481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang T, Cheng J, Feng H et al (2023) Bicuspid aortic valve-associated regulatory regions reveal GATA4 regulation and function during human-induced pluripotent stem cell-based endothelial-mesenchymal transition-brief report. Arterioscler Thromb Vasc Biol 43(2):312–322. https://doi.org/10.1161/ATVBAHA.122.318566

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Yagi H, Saeed S, Bais AS, Gabriel GC, Chen Z, Peterson KA, Li Y, Schwartz MC, Reynolds WT, Saydmohammed M, Gibbs B, Wu Y, Devine W, Chatterjee B, Klena NT, Kostka D, de Mesy Bentley KL, Ganapathiraju MK, Dexheimer P, Leatherbury L, Khalifa O, Bhagat A, Zahid M, Pu W, Watkins S, Grossfeld P, Murray SA, Porter GA, Tsang M, Martin LJ, Benson DW, Aronow BJ, Lo CW (2017) The complex genetics of hypoplastic left heart syndrome. Nat Genet 49(7):1152–1159. https://doi.org/10.1038/ng.3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hrstka SCL, Li X, Nelson TJ (2017) Wanek program genetics pipeline group. NOTCH1-Dependent nitric oxide signaling deficiency in hypoplastic left heart syndrome revealed through patient-specific phenotypes detected in bioengineered cardiogenesis. Stem Cells 35(4):1106–1119. https://doi.org/10.1002/stem.2582

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L (2017) Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 26(16):3031–3045. https://doi.org/10.1093/hmg/ddx140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y, Stewart M, Lee S, Moonen J-R, Zhang B, Grossfeld P, Mital S, Chitayat D, Wu JC, Rabinovitch M, Nelson TJ, Nie S, Wu SM, Gu M (2020) Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell 27(4):574-589.e8. https://doi.org/10.1016/j.stem.2020.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. López-Muneta L, Linares J, Casis O, Martínez-Ibáñez L, González Miqueo A, Bezunartea J, Sanchez de la Nava AM, Gallego M, Fernández-Santos ME, Rodriguez-Madoz JR, Aranguren XL, Fernández-Avilés F, Segovia JC, Prósper F, Carvajal-Vergara X (2021) Generation of NKX2.5GFP reporter human IPSCs and differentiation into functional cardiac fibroblasts. Front Cell Dev Biol 9:797927. https://doi.org/10.3389/fcell.2021.797927

    Article  PubMed  Google Scholar 

  14. Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim K-Y, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park I-H, Yue L, Qyang Y (2012) Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation 126(14):1695–1704. https://doi.org/10.1161/CIRCULATIONAHA.112.116996

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rao KS, Kameswaran V, Bruneau BG (2022) Modeling congenital heart disease: lessons from mice, HPSC-based models, and organoids. Genes Dev 36(11–12):652–663. https://doi.org/10.1101/gad.349678.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hendriks D, Clevers H, Artegiani B (2020) CRISPR-cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27(5):705–731. https://doi.org/10.1016/j.stem.2020.10.014

    Article  CAS  PubMed  Google Scholar 

  17. Garg P, Oikonomopoulos A, Chen H, Li Y, Lam CK, Sallam K, Perez M, Lux RL, Sanguinetti MC, Wu JC (2018) Genome editing of induced pluripotent stem cells to decipher cardiac channelopathy variant. J Am Coll Cardiol 72(1):62–75. https://doi.org/10.1016/j.jacc.2018.04.041

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shu J, Zhang K, Zhang M, Yao A, Shao S, Du F, Yang C, Chen W, Wu C, Yang W, Sun Y, Deng H (2015) GATA family members as inducers for cellular reprogramming to pluripotency. Cell Res 25(2):169–180. https://doi.org/10.1038/cr.2015.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang Y, Tarzami S, Burch JB, Evans T (1998) Common role for each of the CGATA-4/5/6 genes in the regulation of cardiac morphogenesis. Dev Genet 22(3):263–277. https://doi.org/10.1002/(SICI)1520-6408(1998)22:3%3c263::AID-DVG8%3e3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  20. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424(6947):443–447. https://doi.org/10.1038/nature01827

    Article  CAS  PubMed  Google Scholar 

  21. Siguero-Álvarez M, Salguero-Jiménez A, Grego-Bessa J, de la Barrera J, MacGrogan D, Prados B, Sánchez-Sáez F, Piñeiro-Sabarís R, Felipe-Medina N, Torroja C, Gómez MJ, Sabater-Molina M, Escribá R, Richaud-Patin I, Iglesias-García O, Sbroggio M, Callejas S, O’Regan DP, McGurk KA, Dopazo A, Giovinazzo G, Ibañez B, Monserrat L, Pérez-Pomares JM, Sánchez-Cabo F, Pendas AM, Raya A, Gimeno-Blanes JR, de la Pompa JL (2023) A Human hereditary cardiomyopathy shares a genetic substrate with bicuspid aortic valve. Circulation 147(1):47–65. https://doi.org/10.1161/CIRCULATIONAHA.121.058767

    Article  CAS  PubMed  Google Scholar 

  22. Kim M-S, Fleres B, Lovett J, Anfinson M, Samudrala SSK, Kelly LJ, Teigen LE, Cavanaugh M, Marquez M, Geurts AM, Lough JW, Mitchell ME, Fitts RH, Tomita-Mitchell A (2020) Contractility of induced pluripotent stem cell-cardiomyocytes with an MYH6 head domain variant associated with hypoplastic left heart syndrome. Front Cell Dev Biol 8:440. https://doi.org/10.3389/fcell.2020.00440

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi J, Yoshida M, Tarui S, Hirata M, Nagai Y, Kasahara S, Naruse K, Ito H, Sano S, Oh H (2014) Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS ONE 9(7):e102796. https://doi.org/10.1371/journal.pone.0102796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benaglio P, D’Antonio-Chronowska A, Ma W, Yang F, Young Greenwald WW, Donovan MKR, DeBoever C, Li H, Drees F, Singhal S, Matsui H, van Setten J, Sotoodehnia N, Gaulton KJ, Smith EN, D’Antonio M, Rosenfeld MG, Frazer KA (2019) Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits. Nat Genet 51(10):1506–1517. https://doi.org/10.1038/s41588-019-0499-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gifford CA, Ranade SS, Samarakoon R, Salunga HT, de Soysa TY, Huang Y, Zhou P, Elfenbein A, Wyman SK, Bui YK, Cordes Metzler KR, Ursell P, Ivey KN, Srivastava D (2019) Oligogenic inheritance of a human heart disease involving a genetic modifier. Science 364(6443):865–870. https://doi.org/10.1126/science.aat5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson DJ, Kaplan DI, Bell KM, Koutsis K, Haynes JM, Mills RJ, Phelan DG, Qian EL, Leitoguinho AR, Arasaratnam D, Labonne T, Ng ES, Davis RP, Casini S, Passier R, Hudson JE, Porrello ER, Costa MW, Rafii A, Curl CL, Delbridge LM, Harvey RP, Oshlack A, Cheung MM, Mummery CL, Petrou S, Elefanty AG, Stanley EG, Elliott DA (2018) NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun 9(1):1373. https://doi.org/10.1038/s41467-018-03714-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Houweling AC, Scholman KT, Wakker V, Allaart CP, Uhm J-S, Mathijssen IB, Baartscheer T, Postma AV, Barnett P, Verkerk AO, Boukens BJ, Christoffels VM (2022) Patient-specific TBX5-G125R variant induces profound transcriptional deregulation and atrial dysfunction. Circulation 145(8):606–619. https://doi.org/10.1161/CIRCULATIONAHA.121.054347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kathiriya IS, Rao KS, Iacono G, Devine WP, Blair AP, Hota SK, Lai MH, Garay BI, Thomas R, Gong HZ, Wasson LK, Goyal P, Sukonnik T, Hu KM, Akgun GA, Bernard LD, Akerberg BN, Gu F, Li K, Speir ML, Haeussler M, Pu WT, Stuart JM, Seidman CE, Seidman JG, Heyn H, Bruneau BG (2021) Modeling human TBX5 haploinsufficiency predicts regulatory networks for congenital heart disease. Dev Cell 56(3):292-309.e9. https://doi.org/10.1016/j.devcel.2020.11.020

    Article  CAS  PubMed  Google Scholar 

  29. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang D-Z, Li K, Wang J, Wanders RJA, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623. https://doi.org/10.1038/nm.3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Halbach M, Peinkofer G, Baumgartner S, Maass M, Wiedey M, Neef K, Krausgrill B, Ladage D, Fatima A, Saric T, Hescheler J, Müller-Ehmsen J (2013) Electrophysiological integration and action potential properties of transplanted cardiomyocytes derived from induced pluripotent stem cells. Cardiovasc Res 100(3):432–440. https://doi.org/10.1093/cvr/cvt213

    Article  CAS  PubMed  Google Scholar 

  31. Chong JJH, Yang X, Don CW, Minami E, Liu Y-W, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem H-P, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. https://doi.org/10.1038/nature13233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin J-H, Fabreguettes J-R, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71(4):429–438. https://doi.org/10.1016/j.jacc.2017.11.047

    Article  PubMed  Google Scholar 

  33. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. https://doi.org/10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  34. Trac D, Maxwell JT, Brown ME, Xu C, Davis ME (2019) Aggregation of child cardiac progenitor cells into spheres activates notch signaling and improves treatment of right ventricular heart failure. Circ Res 124(4):526–538. https://doi.org/10.1161/CIRCRESAHA.118.313845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agarwal U, George A, Bhutani S, Ghosh-Choudhary S, Maxwell JT, Brown ME, Mehta Y, Platt MO, Liang Y, Sahoo S, Davis ME (2017) Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circ Res 120(4):701–712. https://doi.org/10.1161/CIRCRESAHA.116.309935

    Article  CAS  PubMed  Google Scholar 

  36. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B (2019) Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through MiR-182-regulated macrophage polarization. Cardiovasc Res 115(7):1205–1216. https://doi.org/10.1093/cvr/cvz040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He S, Zimmerman A, Liu Y, Kim I, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective MiRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69. https://doi.org/10.1016/j.ijcard.2015.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK (2015) Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells 33(9):2748–2761. https://doi.org/10.1002/stem.2078

    Article  CAS  PubMed  Google Scholar 

  39. Nasser M, Masood M, Adlat S, Gang D, Zhu S, Li G, Li N, Chen J, Zhu P (2021) Mesenchymal stem cell-derived exosome MicroRNA as therapy for cardiac ischemic injury. Biomed Pharmacother 143:112118. https://doi.org/10.1016/j.biopha.2021.112118

    Article  CAS  PubMed  Google Scholar 

  40. Cardiac progenitor-derived Exosomes protect ischemic myocardium from acute ischemia/reperfusion injury - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732190/. Accessed 07 Aug 2023

  41. Ibrahim AG-E, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619. https://doi.org/10.1016/j.stemcr.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VNS, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64. https://doi.org/10.1161/CIRCRESAHA.117.305990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, Searles CD, Davis ME (2015) Identification of therapeutic covariant MicroRNA clusters in hypoxia treated cardiac progenitor cell exosomes using systems biology. Circ Res 116(2):255–263. https://doi.org/10.1161/CIRCRESAHA.116.304360

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez-King H, García NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepúlveda P (2017) Hypoxia inducible factor-1α potentiates Jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 35(7):1747–1759. https://doi.org/10.1002/stem.2618

    Article  CAS  PubMed  Google Scholar 

  45. Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z, Shen Z (2020) HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 11:373. https://doi.org/10.1186/s13287-020-01881-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gong X-H, Liu H, Wang S-J, Liang S-W, Wang G-G (2019) Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol 234(8):13878–13893. https://doi.org/10.1002/jcp.28070

    Article  CAS  PubMed  Google Scholar 

  47. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785902/. Accessed 07 Aug 2023

  48. Nakamura Y, Kita S, Tanaka Y, Fukuda S, Obata Y, Okita T, Nishida H, Takahashi Y, Kawachi Y, Tsugawa-Shimizu Y, Fujishima Y, Nishizawa H, Takakura Y, Miyagawa S, Sawa Y, Maeda N, Shimomura I (2020) Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol Ther 28(10):2203–2219. https://doi.org/10.1016/j.ymthe.2020.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng G, Zhu D, Huang K, Caranasos TG (2022) Minimally invasive delivery of a hydrogel-based exosome patch to prevent heart failure. J Mol Cell Cardiol 169:113–121. https://doi.org/10.1016/j.yjmcc.2022.04.020

    Article  CAS  PubMed  Google Scholar 

  50. Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803084/. Accessed 07 Aug 2023

  51. Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasché P, Zhang J (2020) Exosomes secreted by HiPSC-derived cardiac cells improve recovery from myocardial infarction in Swine. Sci Transl Med 12(561):eaay318. https://doi.org/10.1126/scitranslmed.aay1318

    Article  CAS  Google Scholar 

  52. He Y, Li Q, Feng F, Gao R, Li H, Chu Y, Li S, Wang Y, Mao R, Ji Z, Hua Y, Shen J, Wang Z, Zhao M, Yao Q (2022) Extracellular vesicles produced by human-induced pluripotent stem cell-derived endothelial cells can prevent arterial stenosis in mice via autophagy regulation. Front Cardiovasc Med 9:922790. https://doi.org/10.3389/fcvm.2022.922790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.111.084343

    Article  PubMed  Google Scholar 

  54. Burkhart HM, Qureshi MY, Peral SC, O’Leary PW, Olson TM, Cetta F, Nelson TJ (2015) Wanek Program Clinical Pipeline Group. Regenerative therapy for hypoplastic left heart syndrome: first report of intraoperative intramyocardial injection of autologous umbilical-cord blood-derived cells. J Thorac Cardiovasc Surg 149(3):e35-37. https://doi.org/10.1016/j.jtcvs.2014.10.093

    Article  PubMed  Google Scholar 

  55. Burkhart HM, Qureshi MY, Rossano JW, Cantero Peral S, O’Leary PW, Hathcock M, Kremers W, Nelson TJ (2019) Wanek HLHS consortium clinical pipeline. Autologous stem cell therapy for hypoplastic left heart syndrome: safety and feasibility of intraoperative intramyocardial injections. J Thorac Cardiovasc Surg 158(6):1614–1623. https://doi.org/10.1016/j.jtcvs.2019.06.001

    Article  PubMed  Google Scholar 

  56. Wehman B, Sharma S, Pietris N, Mishra R, Siddiqui OT, Bigham G, Li T, Aiello E, Murthi S, Pittenger M, Griffith B, Kaushal S (2016) Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload. Am J Physiol Heart Circ Physiol 310(11):H1816-1826. https://doi.org/10.1152/ajpheart.00955.2015

    Article  PubMed  Google Scholar 

  57. Ishigami S, Ohtsuki S, Eitoku T, Ousaka D, Kondo M, Kurita Y, Hirai K, Fukushima Y, Baba K, Goto T, Horio N, Kobayashi J, Kuroko Y, Kotani Y, Arai S, Iwasaki T, Sato S, Kasahara S, Sano S, Oh H (2017) Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial. Circ Res 120(7):1162–1173. https://doi.org/10.1161/CIRCRESAHA.116.310253

    Article  CAS  PubMed  Google Scholar 

  58. Kaushal S, Wehman B, Pietris N, Naughton C, Bentzen SM, Bigham G, Mishra R, Sharma S, Vricella L, Everett AD, Deatrick KB, Huang S, Mehta H, Ravekes WA, Hibino N, Difede DL, Khan A, Hare JM (2017) Study design and rationale for elpis: a phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome. Am Heart J 192:48–56. https://doi.org/10.1016/j.ahj.2017.06.009

    Article  PubMed  Google Scholar 

  59. Traister A, Patel R, Huang A, Patel S, Plakhotnik J, Lee JE, Medina MG, Welsh C, Ruparel P, Zhang L, Friedberg M, Maynes J, Coles J (2018) Cardiac regenerative capacity is age- and disease-dependent in childhood heart disease. PLoS ONE 13(7):e0200342. https://doi.org/10.1371/journal.pone.0200342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamanaka S (2020) Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27(4):523–531. https://doi.org/10.1016/j.stem.2020.09.014

    Article  CAS  PubMed  Google Scholar 

  61. Hayashi R, Ishikawa Y, Katori R, Sasamoto Y, Taniwaki Y, Takayanagi H, Tsujikawa M, Sekiguchi K, Quantock AJ, Nishida K (2017) Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human IPS cells. Nat Protoc 12(4):683–696. https://doi.org/10.1038/nprot.2017.007

    Article  CAS  PubMed  Google Scholar 

  62. Velychko S, Kang K, Kim SM, Kwak TH, Kim K-P, Park C, Hong K, Chung C, Hyun JK, MacCarthy CM, Wu G, Schöler HR, Han DW (2019) Fusion of reprogramming factors alters the trajectory of somatic lineage conversion. Cell Rep 27(1):30-39.e4. https://doi.org/10.1016/j.celrep.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  63. Qabrati X, Kim I, Ghosh A, Bundschuh N, Noé F, Palmer AS, Bar-Nur O (2023) Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells. NPJ Regen Med 8(1):43. https://doi.org/10.1038/s41536-023-00317-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. https://doi.org/10.1126/science.1162494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tavernier G, Wolfrum K, Demeester J, De Smedt SC, Adjaye J, Rejman J (2012) Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived MRNAs encoding Oct4, Sox2, Klf4 and CMyc. Biomaterials 33(2):412–417. https://doi.org/10.1016/j.biomaterials.2011.09.062

    Article  CAS  PubMed  Google Scholar 

  66. Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, Ko S, Yang E, Cha KY, Lanza R, Kim K-S (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476. https://doi.org/10.1016/j.stem.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qin H, Zhao A, Fu X (2017) Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 74(19):3553–3575. https://doi.org/10.1007/s00018-017-2586-x

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Lu Y, Wang L, Ma X, Pu J, Lin L, Deng Q, Li Y, Wang W, Jin Y, Hu Z, Zhou Z, Chen G, Jiang L, Wang H, Zhao X, He X, Fu J, Russ HA, Li W, Zhu S (2023) A fast chemical reprogramming system promotes cell identity transition through a diapause-like state. Nat Cell Biol 25(8):1146–1156. https://doi.org/10.1038/s41556-023-01193-x

    Article  CAS  PubMed  Google Scholar 

  69. Memczak S, Izpisua Belmonte JC (2023) Chemical fast track to induced pluripotency. Nat Cell Biol 25(8):1079–1080. https://doi.org/10.1038/s41556-023-01202-z

    Article  CAS  PubMed  Google Scholar 

  70. Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315. https://doi.org/10.1038/nbt1383

    Article  CAS  PubMed  Google Scholar 

  71. Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215. https://doi.org/10.1038/nature10135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the hard and dedicated work of all the staff that implemented the intervention and evaluation components of the study.

Funding

National Natural Science Foundation of China (No.81300130). Science and Technology Projects for People’s Livelihood of Liaoning Province (2021JH/10300008). Provincial Natural Science Foundation Joint Fund of Liaoning (2023-BSBA-363). Basic Research Projects of Liaoning Province (JYTMS20230073).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: Jiang HK, Cao ML. Acquisition of data: Liu YS. Analysis and interpretation of the data: Sun Y, Han RY. Statistical analysis: Sun Y, Han RY. Obtaining financing: Jiang HK. Writing of the manuscript: Cao ML, Liu YS. Critical revision of the manuscript for intellectual content: Cao ML, Jiang HK. All authors read and approved the final draft.

Corresponding author

Correspondence to Hongkun Jiang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

This study is a literature review and does not require the informed consent of patients, and does not require ethical approval.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Liu, Y., Sun, Y. et al. Current advances in human-induced pluripotent stem cell-based models and therapeutic approaches for congenital heart disease. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04997-z

Keywords

Navigation