Skip to main content
Log in

Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial–mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Pavlova NN, Zhu J, Thompson CB (2022) The hallmarks of cancer metabolism: still emerging. Cell Metab 34:355–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han M-l, Wang F, Gu Y-t, Pei X-h, Ge X, Guo G-c, Li L, Duan X, Zhu M-Z, Y-mJB W (2016) MicroR-760 suppresses cancer stem cell subpopulation and breast cancer cell proliferation and metastasis: by down-regulating NANOG. Biomed Pharmacother 80:304–310

    Article  CAS  PubMed  Google Scholar 

  4. Cui B, Peng F, Lu J, He B, Su Q, Luo H, Deng Z, Jiang T, Huang Y, Ud Din Z (2020) Cancer and stress: NextGen strategies. Brain Behav Immun 93:368–383

    Article  PubMed  Google Scholar 

  5. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofor G (2020) Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  7. Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, Seymour SL, Argast GM, Epstein DM, Haley JD (2011) A systems view of epithelial–mesenchymal transition signaling states. Clin Exp Metastasis 28:137–155

    Article  CAS  PubMed  Google Scholar 

  8. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kridel SJ, Lowther WT, Pemble CW (2007) Fatty acid synthase inhibitors: new directions for oncology. Expert Opin Investig Drugs 16:1817–1829

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, Garcia de Herreros A, Goodall GJ et al (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84

    Article  CAS  PubMed  Google Scholar 

  13. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Derynck R, Weinberg RA (2019) EMT and cancer: more than meets the eye. Dev Cell 49:313–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Son B, Kwon T, Lee S, Han I, Kim W, Youn H, Youn B (2017) CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress-and ROS-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol 313:L916–L929

    Article  PubMed  Google Scholar 

  16. Xu W, Yang Z, Lu N (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr 9:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang JC (2016) Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 9:15

    Google Scholar 

  18. Goossens S, Vandamme N, Van Vlierberghe P, Berx G (2017) EMT transcription factors in cancer development re-evaluated: beyond EMT and MET. Biochim Biophys Acta Rev Cancer 1868:584–591

    Article  CAS  PubMed  Google Scholar 

  19. Sabol M, Trnski D, Musani V, Ozretić P, Levanat S (2018) Role of GLI transcription factors in pathogenesis and their potential as new therapeutic targets. Int J Mol Sci 19:2562

    Article  PubMed  PubMed Central  Google Scholar 

  20. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279:2610–2623

    Article  CAS  PubMed  Google Scholar 

  21. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9:358–365

    Article  CAS  PubMed  Google Scholar 

  22. Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y (2008) ATP citrate lyase: activation and therapeutic implications in non–small cell lung cancer. Cancer Res 68:8547–8554

    Article  CAS  PubMed  Google Scholar 

  23. Qian X, Hu J, Zhao J, Chen H (2015) ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int J Clin Exp Med 8:7855

    PubMed  PubMed Central  Google Scholar 

  24. Icard P, Lincet H (2016) The reduced concentration of citrate in cancer cells: an indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updat 29:47–53

    Article  PubMed  Google Scholar 

  25. Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, Mills GB, Hunt KK, Keyomarsi K (2016) Cyclin E associates with the lipogenic enzyme ATP-citrate lyase to enable malignant growth of breast cancer cells. Cancer Res 76:2406–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu Y, Lu R, Cui J, Sun H, Yang H, Meng Q, Wu S, Aschner M, Li X, Chen R (2019) Inhibition of ATP citrate lyase (ACLY) protects airway epithelia from PM2 5-induced epithelial-mesenchymal transition. Ecotoxicol Environ Saf 167:309–316

    Article  CAS  PubMed  Google Scholar 

  27. Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y, Lei QY (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanai JI, Doro N, Seth P, Sukhatme VP (2013) ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis 4:e696–e696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanai J, Doro N, Sasaki AT, Kobayashi S, Cantley LC, Seth P, Sukhatme VP (2012) Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol 227:1709–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu Z, Ding W, Deng X (2019) PM2.5, Fine particulate matter: a novel player in the epithelial-mesenchymal transition? Front Physiol 10:1404

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J, Du Q, Ren Y, Zhu C (2019) Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial–mesenchymal transition. Stem Cell Res Ther 10:1–16

    Article  Google Scholar 

  32. Wilson KE, Bachawal SV, Tian L, Willmann JK (2014) Multiparametric spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse model. Theranostics 4:1062

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sánchez-Martínez R, Cruz-Gil S, García-Álvarez MS, Reglero G, Ramírez de Molina A (2017) Complementary ACSL isoforms contribute to a non-Warburg advantageous energetic status characterizing invasive colon cancer cells. Sci Rep 7:1–15

    Article  Google Scholar 

  34. Xu Y, Huang J, Xin W, Chen L, Zhao X, Lv Z, Liu Y, Wan QJM (2014) Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy. Sci Rep 63:716–726

    CAS  Google Scholar 

  35. Rios Garcia M, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, Christian S, Hess-Stumpp H, Augustin HG, Müller-Decker K, Nawroth PP, Herzig S, Berriel Diaz M (2017) Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab 26(842–855):e5

    Google Scholar 

  36. Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, Ogata M, Katsuyama Y, Sadahiro H, Suzuki M, Owada Y (2016) Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS ONE 11:e0147717

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen T, Zhou L, Li H, Tian Y, Li J, Dong L, Zhao Y, Wei D (2017) Fatty acid synthase affects expression of ErbB receptors in epithelial to mesenchymal transition of breast cancer cells and invasive ductal carcinoma. Oncol Lett 14:5934–5946

    PubMed  PubMed Central  Google Scholar 

  38. Singh R, Yadav V, Kumar S, Saini N (2015) MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep 5:1–15

    Article  Google Scholar 

  39. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  CAS  PubMed  Google Scholar 

  40. Knobloch M, Braun SM, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo MJ, Kovacs WJ, Karalay O, Suter U, Machado RA, Roccio M, Lutolf MP, Semenkovich CF, Jessberger S (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493:226–230

    Article  CAS  PubMed  Google Scholar 

  41. Dalmau N, Jaumot J, Tauler R, Bedia C (2015) Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells. Mol Biosyst 11:3397–3406

    Article  CAS  PubMed  Google Scholar 

  42. Paton CM, Ntambi JM (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297:E28–E37

    Article  CAS  PubMed  Google Scholar 

  43. Igal RA (2010) Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis 31:1509–1515

    Article  CAS  PubMed  Google Scholar 

  44. Mauvoisin D, Charfi C, Lounis AM, Rassart E, Mounier C (2013) Decreasing stearoyl-C o A desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci 104:36–42

    Article  CAS  PubMed  Google Scholar 

  45. Ha GH, Park JS, Breuer EK (2013) TACC3 promotes epithelial–mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 332:63–73

    Article  CAS  PubMed  Google Scholar 

  46. Ran H, Zhu Y, Deng R, Zhang Q, Liu X, Feng M, Zhong J, Lin S, Tong X, Su Q (2018) Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN. J Exp Clin Cancer Res 37:54

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, Lim S, Fischer C, Nakamura M, Abe M, Cao R, Skov PV, Chen F, Chen X, Lu Y, Nie G, Cao Y (2016) Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun 7:12680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Migita T, Takayama KI, Urano T, Obinata D, Ikeda K, Soga T, Takahashi S, Inoue S (2017) ACSL 3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci 108:2011–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmadian M, Wang Y, Sul HS (2010) Lipolysis in adipocytes. Int J Biochem Cell Biol 42:555–559

    Article  CAS  PubMed  Google Scholar 

  50. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Senga S, Kobayashi N, Kawaguchi K, Ando A, Fujii H (2018) Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1057–1067

    Article  CAS  PubMed  Google Scholar 

  52. Pouyafar A, Heydarabad MZ, Abdolalizadeh J, Zade JA, Rahbarghazi R, Talebi M (2019) Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage. Cell Biosci 9:1–5

    Google Scholar 

  53. Krahmer N, Guo Y, Farese RV Jr, Walther TC (2009) SnapShot: lipid droplets. Cell 139(1024–1024):e1

    Google Scholar 

  54. Cabodevilla AG, Sánchez-Caballero L, Nintou E, Boiadjieva VG, Picatoste F, Gubern A, Claro E (2013) Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids. J Biol Chem 288:27777–27788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coant N, Sakamoto W, Mao C, Hannun YA (2017) Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv Biol Regul 63:122–131

    Article  CAS  PubMed  Google Scholar 

  57. Cumin C, Huang YL, Everest-Dass A, Jacob F (2021) Deciphering the importance of glycosphingolipids on cellular and molecular mechanisms associated with epithelial-to-mesenchymal transition in cancer. Biomolecules 11:1

    Article  Google Scholar 

  58. Fan Z, Jiang H, Wang Z, Qu J (2016) Atorvastatin partially inhibits the epithelial-mesenchymal transition in A549 cells induced by TGF-β1 by attenuating the upregulation of SphK1. Oncol Rep 36:1016–1022

    Article  CAS  PubMed  Google Scholar 

  59. Kim SJ, Chung TW, Choi HJ, Kwak CH, Song KH, Suh SJ, Kwon KM, Chang YC, Park YG, Chang HW, Kim KS, Kim CH, Lee YC (2013) Ganglioside GM3 participates in the TGF-β1-induced epithelial–mesenchymal transition of human lens epithelial cells. Biochem J 449:241–251

    Article  CAS  PubMed  Google Scholar 

  60. Mathow D, Chessa F, Rabionet M, Kaden S, Jennemann R, Sandhoff R, Gröne HJ, Feuerborn A (2015) Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO Rep 16:321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cornell RB, Ridgway ND (2015) CTP: phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 59:147–171

    Article  CAS  PubMed  Google Scholar 

  62. Arsenault DJ, Yoo BH, Rosen KV, Ridgway ND (2013) Ras-induced up-regulation of CTP: phosphocholine cytidylyltransferase α contributes to malignant transformation of intestinal epithelial cells. J Biol Chem 288:633–643

    Article  CAS  PubMed  Google Scholar 

  63. Eiriksson FF, Rolfsson O, Ogmundsdottir HM, Haraldsson GG, Thorsteinsdottir M, Halldorsson S (2018) Altered plasmalogen content and fatty acid saturation following epithelial to mesenchymal transition in breast epithelial cell lines. Int J Biochem Cell Biol 103:99–104

    Article  CAS  PubMed  Google Scholar 

  64. Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, Han SI, Kang HS (2018) Oncogenic metabolism acts as a prerequisite step for induction of cancer metastasis and cancer stem cell phenotype. Oxid Med Cell Longev 2018:1

    Google Scholar 

  65. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13:11–26

    Article  CAS  PubMed  Google Scholar 

  66. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zavadil J, Böttinger EP (2005) TGF-β and epithelial-to-mesenchymal transitions. Nature 24:5764–5774

    CAS  Google Scholar 

  68. Pickup M, Novitskiy S, Moses HLJNRC (2013) The roles of TGFβ in the tumour microenvironment. Oncogene 13:788–799

    CAS  Google Scholar 

  69. Tiwari N, Gheldof A, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 1:194–207

    Article  Google Scholar 

  70. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (2007) ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117:2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  72. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC (2008) Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13:385–393

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  74. Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P (2004) Targets for TNF-α-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 318:168–175

    Article  PubMed  Google Scholar 

  75. Wang T, Takikawa Y, Tabuchi T, Satoh T, Kosaka K, Suzuki K (2012) Carnosic acid (CA) prevents lipid accumulation in hepatocytes through the EGFR/MAPK pathway. J Gastroenterol 47:805–813

    Article  CAS  PubMed  Google Scholar 

  76. Liang H, Estes MK, Zhang H, Du G, Zhou Y (2018) Bile acids target proteolipid nano-assemblies of EGFR and phosphatidic acid in the plasma membrane for stimulation of MAPK signaling. PLoS ONE 13:e0198983

    Article  PubMed  PubMed Central  Google Scholar 

  77. Centuori SM, Martinez JD (2014) Differential regulation of EGFR–MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 59:2367–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Song F, Zhao X, Jiang H, Wu X, Wang B, Zhou M, Tian M, Shi B, Wang H, Jia Y, Wang H, Pan X, Li Z (2017) EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer 16:127

    Article  PubMed  PubMed Central  Google Scholar 

  79. Barone F (2017) Mitogen-activated protein kinase signaling in cerebrovascular disease. Primer Cerebrovasc Dis 1:260–264

    Article  Google Scholar 

  80. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009) p38MAPK: stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang XZ, Ron D (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272:1347–1349

    Article  CAS  PubMed  Google Scholar 

  82. Ho KK, McGuire VA, Koo CY, Muir KW, de Olano N, Maifoshie E, Kelly DJ, McGovern UB, Monteiro LJ, Gomes AR, Nebreda AR, Campbell DG, Arthur JS, Lam EW (2012) Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J Biol Chem 287:1545–1555

    Article  CAS  PubMed  Google Scholar 

  83. Han J, Sun P (2007) The pathways to tumor suppression via route p38. Trends Biochem Sci 32:364–371

    Article  CAS  PubMed  Google Scholar 

  84. Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L, Xu J (2011) Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res 71:3980–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park JW, Han CR, Zhao L, Willingham MC, Cheng SY (2016) Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr Relat Cancer 23:53–63

    Article  CAS  PubMed  Google Scholar 

  86. Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, Andreelli F, Foretz M (2009) AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf) 196:81–98

    Article  CAS  PubMed  Google Scholar 

  87. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H (2018) JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(136–150):e5

    Google Scholar 

  88. Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10

    CAS  PubMed  Google Scholar 

  89. Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245–e245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416

    Article  PubMed  Google Scholar 

  91. Yang YM, Han CY, Kim YJ, Kim SG (2010) AMPK-associated signaling to bridge the gap between fuel metabolism and hepatocyte viability. World J Gastroenterol 16:3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carling D (2004) The AMP-activated protein kinase cascade–a unifying system for energy control. Trends Biochem Sci 29:18–24

    Article  CAS  PubMed  Google Scholar 

  93. Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120

    Article  CAS  PubMed  Google Scholar 

  94. David CJ, Massagué J (2018) Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 19:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(136–150):e5

    Google Scholar 

  96. Katsuno Y, Meyer DS, Zhang Z, Shokat KM, Akhurst RJ, Miyazono K, Derynck R (2019) Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal 12:1

    Article  Google Scholar 

  97. Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, Deberardinis RJ, Boothman DA (2015) Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene 34:3908–3916

    Article  CAS  PubMed  Google Scholar 

  98. Reggio S, Rouault C, Poitou C, Bichet JC, Prifti E, Bouillot JL, Rizkalla S, Lacasa D, Tordjman J, Clément K (2016) Increased basement membrane components in adipose tissue during obesity: links with TGFβ and metabolic phenotypes. J Clin Endocrinol Metab 101(2578):2587

    Google Scholar 

  99. Liu RM, Desai LP (2015) Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464

    Article  CAS  PubMed  Google Scholar 

  101. Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, Jackson E, Aiello NM, Haas NB, Rebbeck TR, Judkins A, Won KJ, Chodosh LA, Garcia BA, Stanger BZ, Feldman MD, Blair IA, Wellen KE (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Krycer JR, Sharpe LJ, Luu W, Brown AJ (2010) The Akt–SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab 21:268–276

    Article  CAS  PubMed  Google Scholar 

  103. Liu DD, Han CC, Wan HF, He F, Xu HY, Wei SH, Du XH, Xu F (2016) Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in goose primary hepatocytes. Animal 10:1319–1327

    Article  CAS  PubMed  Google Scholar 

  104. Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, Martínez-Flórez S, Fernández A, Benet M, Olcoz JL, Jover R, González-Gallego J, Sánchez-Campos S (2015) Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 59:879–893

    Article  CAS  PubMed  Google Scholar 

  105. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  CAS  PubMed  Google Scholar 

  106. Liu X, Yun F, Shi L, Li ZH, Luo NR, Jia YF (2015) Roles of signaling pathways in the epithelial-mesenchymal transition in cancer. Asian Pac J Cancer Prev 16:6201–6206

    Article  PubMed  Google Scholar 

  107. Gwak J, Hwang SG, Park HS, Choi SR, Park SH, Kim H, Ha NC, Bae SJ, Han JK, Kim DE, Cho JW, Oh S (2012) Small molecule-based disruption of the Axin/beta-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res 22:237–247

    Article  CAS  PubMed  Google Scholar 

  108. Prestwich TC, Macdougald OA (2007) Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 19:612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953

    Article  CAS  PubMed  Google Scholar 

  110. Lee YJ, Han HJ (2010) Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3β, Snail1, and β-catenin in renal proximal tubule cells. Am J Physiol Renal Physiol 298:F1263–F1275

    Article  CAS  PubMed  Google Scholar 

  111. Guo Y, Li Z, Ding R, Li H, Zhang L, Yuan W, Wang Y (2014) Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells. Int J Clin Exp Pathol 7:5978

    PubMed  PubMed Central  Google Scholar 

  112. Zhao YR, Wang JL, Xu C, Li YM, Sun B, Yang LY (2019) HEG1 indicates poor prognosis and promotes hepatocellular carcinoma invasion, metastasis, and EMT by activating Wnt/β-catenin signaling. Clin Sci (Lond) 133:1645–1662

    Article  CAS  PubMed  Google Scholar 

  113. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14:611–629

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu PP, Liao J, Tang ZJ, Wu WJ, Yang J, Zeng ZL, Hu Y, Wang P, Ju HQ, Xu RH, Huang P (2014) Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Diffe 21:124–135

    Article  Google Scholar 

  115. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322

    Article  CAS  PubMed  Google Scholar 

  116. Taraboletti G, Perin L, Bottazzi B, Mantovani A, Giavazzi R, Salmona M (1989) Membrane fluidity affects tumor-cell motility, invasion and lung-colonizing potential. Int J Cancer 44:707–713

    Article  CAS  PubMed  Google Scholar 

  117. Kim YC, Ntambi JM (1999) Regulation of stearoyl-CoA desaturase genes: role in cellular metabolism and preadipocyte differentiation. Biochem Biophys Res Commun 266:1–4

    Article  CAS  PubMed  Google Scholar 

  118. Nath A, Chan C (2016) Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci Rep 6:1–13

    Article  Google Scholar 

  119. Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, Wu Q, Flavahan W, Levison B, Johansen ML, Schmitt D, Neltner JM, Huang P, Ren B, Sloan AE, Silverstein RL, Gladson CL, DiDonato JA, Brown JM, McIntyre T, Hazen SL, Horbinski C, Rich JN, Lathia JD (2014) Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells 32:1746–1758

    Article  CAS  PubMed  Google Scholar 

  120. Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, Postle AD, Gould AP (2015) Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163:340–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pellettieri J, Sánchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105

    Article  CAS  PubMed  Google Scholar 

  122. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453:1072–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lai KKY, Kweon SM, Chi F, Hwang E, Kabe Y, Higashiyama R, Qin L, Yan R, Wu RP, Lai K, Fujii N, French S, Xu J, Wang JY, Murali R, Mishra L, Lee JS, Ntambi JM, Tsukamoto H (2017) Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 152:1477–1491

    Article  CAS  PubMed  Google Scholar 

  125. MacArthur BD, Sevilla A, Lenz M, Müller FJ, Schuldt BM, Schuppert AA, Ridden SJ, Stumpf PS, Fidalgo M, Ma’ayan A, Wang J, Lemischka IR (2012) Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol 14:1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  PubMed  Google Scholar 

  127. Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM, Hess S, Machida K (2016) NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 23:206–219

    Article  CAS  PubMed  Google Scholar 

  128. Cho J, Park E (2020) Ferulic acid maintains the self-renewal capacity of embryo stem cells and adipose-derived mesenchymal stem cells in high fat diet-induced obese mice. J Nutr Biochem 77:108327

    Article  CAS  PubMed  Google Scholar 

  129. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  CAS  PubMed  Google Scholar 

  130. Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH (2012) Phospholipase signalling networks in cancer. Nat Rev Cancer 12:782–792

    Article  CAS  PubMed  Google Scholar 

  131. Elf SE, Chen J (2014) Targeting glucose metabolism in patients with cancer. Cancer 120:774–780

    Article  PubMed  Google Scholar 

  132. Bogdanovic E (2015) IDH1, lipid metabolism and cancer: Shedding new light on old ideas. Biochim Biophys Acta 1850:1781–1785

    Article  CAS  PubMed  Google Scholar 

  133. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen Q, Hongu T, Sato T, Zhang Y, Ali W, Cavallo JA, van der Velden A, Tian H, Di Paolo G, Nieswandt B, Kanaho Y, Frohman MA (2012) Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal 5:79

    Article  Google Scholar 

  135. Park MH, Min do S (2011) Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem Biophys Res Commun 412:710–715

    Article  CAS  PubMed  Google Scholar 

  136. Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W (2016) SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett 12:2409–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yao L, Guo X, Gui Y (2018) Acetyl-CoA synthetase 2 promotes cell migration and invasion of renal cell carcinoma by upregulating lysosomal-associated membrane protein 1 expression. Cell Physiol Biochem 45:984–992

    Article  CAS  PubMed  Google Scholar 

  138. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  140. Osman MA, Hennessy BT (2015) Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin Med Insights Oncol 9:105–112

    Article  PubMed  PubMed Central  Google Scholar 

  141. Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescos C, Di Croce L, Benitah SA (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541:41–45

    Article  CAS  PubMed  Google Scholar 

  142. Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, Petit PX, Vaz FM, Gottlieb E (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183:681–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, Majumder PK, Sengupta S (2015) Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun 6:6139

    Article  CAS  PubMed  Google Scholar 

  144. Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J, Huang Y (2019) Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 9:265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ye H, Adane B, Khan N, Sullivan T, Minhajuddin M, Gasparetto M, Stevens B, Pei S, Balys M, Ashton JM, Klemm DJ, Woolthuis CM, Stranahan AW, Park CY, Jordan CT (2016) Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19:23–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27:136-150.e5

    Article  CAS  PubMed  Google Scholar 

  147. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, Gallick GE, Logsdon CD, McConkey DJ, Choi W (2009) Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69:5820–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, Svatek R, Das A, Adam L, Kamat A, Siefker-Radtke A, Dinney C (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12:1–10

    Article  Google Scholar 

  150. Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, Sarkisian MR, Devers KG, Yachnis AT, Kupper MD, Neal D, Nabilsi NH, Kladde MP, Suslov O, Brabletz S, Brabletz T, Reynolds BA, Steindler DA (2013) The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med 5:1196–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Walsh LA, Damjanovski S (2011) IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition. Cell Commun Signal 9:1–11

    Article  Google Scholar 

  152. Gan Y, Wientjes MG, Au JL (2006) Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors. Pharm Res 23:1324–1331

    Article  CAS  PubMed  Google Scholar 

  153. Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K (2010) Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS ONE 5:e13390

    Article  PubMed  PubMed Central  Google Scholar 

  154. Liu Y, Du F, Chen W, Yao M, Lv K, Fu P (2013) Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin. Exp Cell Res 319:3140–3149

    Article  CAS  PubMed  Google Scholar 

  155. Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, Schüler J, Berthold M, Weber A, Burk U, Lübbert M, Puhr M, Culig Z, Wellner U, Keck T, Bronsert P, Küsters S, Hopt UT, Stemmler MP, Brabletz T (2015) ZEB 1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med 7:831–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Saddoughi SA, Ogretmen B (2013) Diverse functions of ceramide in cancer cell death and proliferation. Adv Cancer Res 117:37–58

    Article  CAS  PubMed  Google Scholar 

  157. Schilling T, Eder C (2011) Sodium dependence of lysophosphatidylcholine-induced caspase-1 activity and reactive oxygen species generation. Immunobiology 216:118–125

    Article  CAS  PubMed  Google Scholar 

  158. Gorin A, Gabitova L, Astsaturov I (2012) Regulation of cholesterol biosynthesis and cancer signaling. Curr Opin Pharmacol 12:710–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu YY, Hill RA, Li YT (2013) Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 117:59–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Brovkovych V, Izhar Y, Danes JM, Dubrovskyi O, Sakallioglu IT, Morrow LM, Atilla-Gokcumen GE, Frasor J (2018) Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang X, Sun Y, Wong J, Conklin DS (2013) PPARγ maintains ERBB2-positive breast cancer stem cells. Oncogene 32:5512–5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rios Garcia M, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, Christian S, Hess-Stumpp H, Augustin HG, Müller-Decker K, Nawroth PP, Herzig S, Berriel Diaz M (2017) Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab 26:842-855.e5

    Article  CAS  PubMed  Google Scholar 

  165. Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67:8180–8187

    Article  CAS  PubMed  Google Scholar 

  166. Jones JE, Esler WP, Patel R, Lanba A, Vera NB, Pfefferkorn JA, Vernochet C (2017) Inhibition of acetyl-CoA carboxylase 1 (ACC1) and 2 (ACC2) Reduces proliferation and de novo lipogenesis of EGFRvIII human glioblastoma cells. PLoS ONE 12:e0169566

    Article  PubMed  PubMed Central  Google Scholar 

  167. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescós C, Di Croce L, Benitah SA (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541:41–45

    Article  CAS  PubMed  Google Scholar 

  168. Uray IP, Liang Y, Hyder SM (2004) Estradiol down-regulates CD36 expression in human breast cancer cells. Cancer Lett 207:101–107

    Article  CAS  PubMed  Google Scholar 

  169. Tamura K, Makino A, Hullin-Matsuda F, Kobayashi T, Furihata M, Chung S, Ashida S, Miki T, Fujioka T, Shuin T, Nakamura Y, Nakagawa H (2009) Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res 69:8133–8140

    Article  CAS  PubMed  Google Scholar 

  170. Jump DB, Torres-Gonzalez M, Olson LK (2011) Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem Pharmacol 81:649–660

    Article  CAS  PubMed  Google Scholar 

  171. Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, Heggermont W, Goddé L, Vinckier S, Van Veldhoven PP, Eelen G, Schoonjans L, Gerhardt H, Dewerchin M, Baes M, De Bock K, Ghesquière B, Lunt SY, Fendt SM, Carmeliet P (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, Sawyer SK, Fuerth B, Faubert B, Kalliomäki T, Elia A et al (2011) Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 25:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P, Rhein S (2007) A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond) 113:205–212

    Article  CAS  PubMed  Google Scholar 

  174. Lee EA, Angka L, Rota SG, Hanlon T, Mitchell A, Hurren R, Wang XM, Gronda M, Boyaci E, Bojko B, Minden M, Sriskanthadevan S, Datti A, Wrana JL, Edginton A, Pawliszyn J, Joseph JW, Quadrilatero J, Schimmer AD, Spagnuolo PA (2015) Targeting mitochondria with avocatin B induces selective leukemia cell death. Cancer Res 75:2478–2488

    Article  CAS  PubMed  Google Scholar 

  175. Duan W, Liu X (2020) PSAT1 upregulation contributes to cell growth and cisplatin resistance in cervical cancer cells via regulating PI3K/AKT signaling pathway. Ann Clin Lab Sci 50:512–518

    CAS  PubMed  Google Scholar 

  176. Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM (2005) Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54:540–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ruiz Garcia V, López-Briz E, Carbonell Sanchis R, Gonzalvez Perales JL, Bort-Marti S (2013) Megestrol acetate for treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev 28:1

    Google Scholar 

  178. Ando K, Takahashi F, Kato M, Kaneko N, Doi T, Ohe Y, Koizumi F, Nishio K, Takahashi KJ (2014) Tocilizumab, a proposed therapy for the cachexia of Interleukin6-expressing lung cancer. PLoS ONE 9:e102436

    Article  PubMed  PubMed Central  Google Scholar 

  179. Soria JC, Ramalingam SS (2018) Osimertinib in EGFR mutation-positive advanced NSCLC. N Engl J Med 378:1262–1263

    PubMed  Google Scholar 

  180. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365:1273–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hamanaka RB, Chandel NS (2012) Targeting glucose metabolism for cancer therapy. J Exp Med 209:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhong C, Fan L, Yao F, Shi J, Fang W, Zhao H (2014) HMGCR is necessary for the tumorigenecity of esophageal squamous cell carcinoma and is regulated by Myc. Tumour Biol 35:4123–4129

    Article  CAS  PubMed  Google Scholar 

  183. Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA, Tessema M, Leng S, Belinsky SA (2011) EMT and stem cell–like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71:3087–3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, Wei S, Zhao L, Vatan L, Wen B, Shu P, Sun D, Kleer C, Wicha M, Sabel M, Tao K, Wang G, Zou W (2018) Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB a. Cell Metab 28(87–103):e6

    Google Scholar 

  185. Cao Y, Arbiser J, D’Amato RJ, D’Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, Dvorak H, Langer R (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3:1143

    Article  Google Scholar 

  186. Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  CAS  PubMed  Google Scholar 

  187. Quintás-Cardama A (2018) CAR T-cell therapy in large b-cell lymphoma. N Engl J Med 378:1065–1065

    Article  PubMed  Google Scholar 

  188. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research work was supported by the National Key R&D Program of China (2022YFA1104002), the National Natural Science Foundation of China (Nos. 82373096, 82273480, 82002960, 82003141), Applied Basic Research Planning Project of Liaoning (2023JH2/101600019), the Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents (2023RY013), and Dalian High-level Talents Innovation Support Program-Young Science and Technology Star (2021RQ004).

Author information

Authors and Affiliations

Authors

Contributions

ZUD reviewed the literature and drafted the manuscript. QL and FP conceived the work. BC and FP reviewed the literature and edited the manuscript. CW, XZ, and AM edited the manuscript. All authors approved the manuscript for submission.

Corresponding authors

Correspondence to Fei Peng or Quentin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Z.U., Cui, B., Wang, C. et al. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04995-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04995-1

Keywords

Navigation