Skip to main content
Log in

Vitamin D accelerates the subdural hematoma clearance through improving the meningeal lymphatic vessel function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Subdural hematoma (SDH) drains into the extracranial lymphatic system through the meningeal lymphatic vessels (mLVs) but the formation of SDH impairs mLVs. Because vitamin D (Vit D) can protect the endothelial cells, we hypothesized that Vit D may enhance the SDH clearance. SDH was induced in Sprague–Dawley rats and treated with Vit D or vehicle. Hematoma volume in each group was measured by H&E staining and hemoglobin quantification. Evans blue (EB) quantification and red blood cells injection were used to evaluated the drainage of mLVs. Western blot analysis and immunofluorescence were conducted to assess the expression of lymphatic protein markers. We also examined the inflammatory factors levels in subdural space by ELISA. Vit D treatment significantly reduced SDH volume and improved the drainage of SDH to cervical lymph nodes. The structure of mLVs in SDH rats were protected by Vit D, and the expressions of LYVE1, PROX1, FOXC2, and VE-cadherin were increased after Vit D treatment. The TNF-α, IL-6, and IL-8 levels were reduced in Vit D group. In vitro, Vit D also increased the VE-cadherin expression levels under inflammation. Vit D protects the structure of mLVs and enhances the absorption of SDH, partly by the anti-inflammatory effect of Vit D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Nathan S, Goodarzi Z, Jette N et al (2017) Anticoagulant and antiplatelet use in seniors with chronic subdural hematoma: systematic review. Neurology 88:1889–1893. https://doi.org/10.1212/WNL.0000000000003918

    Article  CAS  PubMed  Google Scholar 

  2. Miranda LB, Braxton E, Hobbs J, Quigley MR (2011) Chronic subdural hematoma in the elderly: not a benign disease: clinical article. J Neurosurg 114:72–76. https://doi.org/10.3171/2010.8.JNS10298

    Article  PubMed  Google Scholar 

  3. Hohenstein A, Erber R, Schilling L, Weigel R (2005) Increased mRNA expression of VEGF within the hematoma and imbalance of angiopoietin-1 and -2 mRNA within the neomembranes of chronic subdural hematoma. J Neurotrauma 22:518–528. https://doi.org/10.1089/neu.2005.22.518

    Article  PubMed  Google Scholar 

  4. Heula A-L, Ohlmeier S, Sajanti J, Majamaa K (2013) Characterization of chronic subdural hematoma fluid proteome. Neurosurgery 73:317–331. https://doi.org/10.1227/01.neu.0000430323.24623.de

    Article  PubMed  Google Scholar 

  5. Edlmann E, Giorgi-Coll S, Whitfield PC et al (2017) Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy. J Neuroinflammation 14:108. https://doi.org/10.1186/s12974-017-0881-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwarz F, Loos F, Dünisch P et al (2015) Risk factors for reoperation after initial burr hole trephination in chronic subdural hematomas. Clin Neurol Neurosurg 138:66–71. https://doi.org/10.1016/j.clineuro.2015.08.002

    Article  PubMed  Google Scholar 

  7. Almenawer SA, Farrokhyar F, Hong C et al (2014) Chronic subdural hematoma management: a systematic review and meta-analysis of 34,829 patients. Ann Surg 259:449–457. https://doi.org/10.1097/SLA.0000000000000255

    Article  PubMed  Google Scholar 

  8. Oh H-J, Lee K-S, Shim J-J et al (2010) Postoperative course and recurrence of chronic subdural hematoma. J Korean Neurosurg Soc 48:518–523. https://doi.org/10.3340/jkns.2010.48.6.518

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang R-C, Feng H, Zhang J et al (2018) Safety and Efficacy of Atorvastatin for Chronic Subdural Hematoma in Chinese Patients: A Randomized ClinicalTrial. JAMA Neurol 75:1338–1346. https://doi.org/10.1001/jamaneurol.2018.2030

    Article  PubMed  PubMed Central  Google Scholar 

  10. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahn JH, Cho H, Kim J-H et al (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572:62–66. https://doi.org/10.1038/s41586-019-1419-5

    Article  CAS  PubMed  Google Scholar 

  12. Da Mesquita S, Louveau A, Vaccari A et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560:185–191. https://doi.org/10.1038/s41586-018-0368-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Louveau A, Plog BA, Antila S et al (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 127:10

    Article  Google Scholar 

  14. Aspelund A, Antila S, Proulx ST et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. https://doi.org/10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolte AC, Dutta AB, Hurt ME et al (2020) Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 11:4524. https://doi.org/10.1038/s41467-020-18113-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanamori M, Kipnis J (2020) Meningeal lymphatics “drain” brain tumors. Cell Res 30:191–192. https://doi.org/10.1038/s41422-020-0286-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu X, Gao C, Yuan J et al (2020) Subdural haematomas drain into the extracranial lymphatic systemthrough the meningeal lymphatic vessels. Acta Neuropathol Commun 8:16. https://doi.org/10.1186/s40478-020-0888-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jamali N, Sorenson CM, Sheibani N (2018) Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol 314:H753–H765. https://doi.org/10.1152/ajpheart.00319.2017

    Article  CAS  PubMed  Google Scholar 

  19. Colotta F, Jansson B, Bonelli F (2017) Modulation of inflammatory and immune responses by vitamin D. J Autoimmun 85:78–97. https://doi.org/10.1016/j.jaut.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  20. Schröder-Heurich B, von Hardenberg S, Brodowski L et al (2019) Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells. FASEB J Off Publ Fed Am Soc Exp Biol 33:9142–9153. https://doi.org/10.1096/fj.201802750RR

    Article  Google Scholar 

  21. Latic N, Erben RG (2020) Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int J Mol Sci 21:6483. https://doi.org/10.3390/ijms21186483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giulietti A, van Etten E, Overbergh L et al (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 77:47–57. https://doi.org/10.1016/j.diabres.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  23. Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG (2013) Role of vitamin D in atherosclerosis. Circulation 128:2517–2531. https://doi.org/10.1161/CIRCULATIONAHA.113.002654

    Article  PubMed  Google Scholar 

  24. Yazdani S, Poosti F, Toro L et al (2017) Vitamin D inhibits lymphangiogenesis through VDR-dependent mechanisms. Sci Rep 7:44403. https://doi.org/10.1038/srep44403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quan W, Zhang Z, Li P et al (2019) Role of regulatory T cells in atorvastatin induced absorption of chronic subdural hematoma in rats. Aging Dis 10:992–1002. https://doi.org/10.14336/AD.2018.0926

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Wang D, Han Z et al (2021) A novel rat model of chronic subdural hematoma: induction of inflammation and angiogenesis in the subdural space mimicking human-like features of progressively expanding hematoma. Brain Res Bull 172:108–119. https://doi.org/10.1016/j.brainresbull.2021.04.024

    Article  CAS  PubMed  Google Scholar 

  27. Grundmann M, Haidar M, Placzko S et al (2012) Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am J Physiol Cell Physiol 303:C954-962. https://doi.org/10.1152/ajpcell.00030.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heaney RP (2004) Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr 80:1706S-S1709. https://doi.org/10.1093/ajcn/80.6.1706S

    Article  CAS  PubMed  Google Scholar 

  29. Jurisic G, Detmar M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335:97–108. https://doi.org/10.1007/s00441-008-0644-2

    Article  CAS  PubMed  Google Scholar 

  30. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122. https://doi.org/10.1242/jcs.017897

    Article  CAS  PubMed  Google Scholar 

  31. Liao S, von der Weid PY (2014) Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis. https://doi.org/10.1007/s10456-014-9416-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Quan W, Zhang Z, Tian Q et al (2015) A rat model of chronic subdural hematoma: insight into mechanisms of revascularization and inflammation. Brain Res 1625:84–96. https://doi.org/10.1016/j.brainres.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  33. Xiang T, Feng D, Zhang X et al (2022) Effects of increased intracranial pressure on cerebrospinal fluid influx, cerebral vascular hemodynamic indexes, and cerebrospinal fluid lymphatic efflux. J Cereb Blood Flow Metab 42:2287–2302. https://doi.org/10.1177/0271678X221119855

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476. https://doi.org/10.1016/j.cell.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  35. Norden PR, Sabine A, Wang Y et al (2020) Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation. Elife 9:e53814. https://doi.org/10.7554/eLife.53814

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sabine A, Agalarov Y, Maby-El Hajjami H et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22:430–445. https://doi.org/10.1016/j.devcel.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  37. Sabine A, Bovay E, Demir CS et al (2015) FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 125:3861–3877. https://doi.org/10.1172/JCI80454

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45. https://doi.org/10.1038/nri1258

    Article  CAS  PubMed  Google Scholar 

  39. Zoccali C, Curatola G, Panuccio V et al (2014) Paricalcitol and endothelial function in chronic kidney disease trial. Hypertens Dallas Tex 64:1005–1011. https://doi.org/10.1161/HYPERTENSIONAHA.114.03748

    Article  CAS  Google Scholar 

  40. Battistini C, Ballan R, Herkenhoff ME et al (2020) Vitamin D modulates intestinal microbiota in inflammatory bowel diseases. Int J Mol Sci 22:362. https://doi.org/10.3390/ijms22010362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeon S-M, Shin E-A (2018) Exploring vitamin D metabolism and function in cancer. Exp Mol Med 50:1–14. https://doi.org/10.1038/s12276-018-0038-9

    Article  CAS  PubMed  Google Scholar 

  42. Chiang K-C, Chen TC (2013) The anti-cancer actions of vitamin D. Anticancer Agents Med Chem 13:126–139

    Article  CAS  PubMed  Google Scholar 

  43. Bollag WB, Ducote J, Harmon CS (1995) Biphasic effect of 1,25-dihydroxyvitamin D3 on primary mouse epidermal keratinocyte proliferation. J Cell Physiol 163:248–256. https://doi.org/10.1002/jcp.1041630205

    Article  CAS  PubMed  Google Scholar 

  44. Lin M-S (2023) Subdural lesions linking additional intracranial spaces and chronic subdural hematomas: a narrative review with mutual correlation and possible mechanisms behind high recurrence. Diagn Basel Switz 13:235. https://doi.org/10.3390/diagnostics13020235

    Article  Google Scholar 

  45. Pittarella P, Squarzanti DF, Molinari C et al (2015) NO-dependent proliferation and migration induced by Vitamin D in HUVEC. J Steroid Biochem Mol Biol 149:35–42. https://doi.org/10.1016/j.jsbmb.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  46. Cromer WE, Zawieja SD, Tharakan B et al (2014) The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis 17:395–406. https://doi.org/10.1007/s10456-013-9393-2

    Article  CAS  PubMed  Google Scholar 

  47. Moskała M, Gościński I, Kałuża J et al (2007) Morphological aspects of the traumatic chronic subdural hematoma capsule: SEM studies. Microsc Microanal 13:211–219. https://doi.org/10.1017/S1431927607070286

    Article  CAS  PubMed  Google Scholar 

  48. Kitazono M, Yokota H, Satoh H et al (2012) Measurement of inflammatory cytokines and thrombomodulin in chronic subdural hematoma. Neurol Med Chir (Tokyo) 52:810–815. https://doi.org/10.2176/nmc.52.810

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 82271394, No.82071390, No. 81671221).

Author information

Authors and Affiliations

Authors

Contributions

Yupeng Chen, Xuanhui Liu and Jiangyuan Yuan contributed equally to this work. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chuang Gao, Jianning Zhang or Rongcai Jiang.

Ethics declarations

Conflict of interest

This research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, X., Yuan, J. et al. Vitamin D accelerates the subdural hematoma clearance through improving the meningeal lymphatic vessel function. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04918-6

Keywords

Navigation