Skip to main content

Advertisement

Log in

SNORC knockdown alleviates inflammation, autophagy defect and matrix degradation of chondrocytes in osteoarthritis development

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Excessive inflammation and autophagy defect of chondrocytes play important roles in the pathological process of osteoarthritis (OA). The present study aimed to clarify the roles of small novel rich in cartilage (SNORC) in these pathological changes of chondrocytes in OA. Bioinformatics analysis of GEO dataset GSE207881 displayed that SNORC was a potential biomarker for OA. As confirmed by quantitative real-time PCR, immunohistochemical staining and western blotting, SNORC was significantly up-regulated in cartilage of OA rat model and interleukin (IL)-1β-stimulated primary rat articular chondrocytes in contrast to their corresponding normal control. Knocking down SNORC in IL-1β-induced chondrocytes obviously suppressed the production of nitric oxide (NO), IL-6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) to alleviate inflammation, and reduced the protein levels of a disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) and matrix metallopeptidase (MMP)13 and elevated collagen type 2 alpha 1 (COL2A1) level to improve matrix degradation. Down-regulation of SNORC increased Beclin1 expression and LC3II/LC3I ratio, but suppressed p62 expression to restore impaired autophagy in IL-1β-induced chondrocytes. Moreover, down-regulating SNORC mitigated mitochondrial dysfunction and apoptosis in IL-1β-stimulated chondrocytes. Mechanically, SNORC simultaneously activated the phosphatidylinositol-3-kinase/serine threonine kinase (PI3K/AKT) and c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in the IL-1β-induced chondrocyte, while re-activating the PI3K and JNK signals abolished the suppressive effect of down-regulating SNORC on IL-1β-induced chondrocyte damage. In a word, SNORC knockdown alleviates inflammation, matrix degradation, autophagy defect and excessive apoptosis of chondrocytes during OA development via suppressing the PI3K and JNK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data were all included in this paper. The original data are available from the corresponding author upon reasonable request.

References

  1. Jin J, Lv X, Wang B, Ren C, Jiang J, Chen H, Chen X, Gu M, Pan Z, Tian N, Wu A, Sun L, Gao W, Wang X, Zhang X, Wu Y, Zhou Y (2021) Limonin Inhibits IL-1β-Induced Inflammation and Catabolism in Chondrocytes and Ameliorates Osteoarthritis by Activating Nrf2. Oxid Med Cell Longev 2021: 7292512. https://doi.org/10.1155/2021/7292512

  2. Diaz-Rodriguez P, Mariño C, Vázquez JA, Caeiro-Rey JR, Landin M (2021) Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Mater Sci Eng C Mater Biol Appl 128:112254. https://doi.org/10.1016/j.msec.2021.112254

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Huang Z, Zhang H, Lu J, Tian Y, Wei Y, Yang Y, Bai L (2021) P2X7 Receptor Induces Pyroptotic Inflammation and Cartilage Degradation in Osteoarthritis via NF-κB/NLRP3 Crosstalk. Oxid Med Cell Longev 2021: 8868361. https://doi.org/10.1155/2021/8868361

  4. Minguzzi M, Cetrullo S, D’Adamo S, Silvestri Y, Flamigni F, RM Borzì (2018) Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis. Oxid Med Cell Longev 2018: 3075293. https://doi.org/10.1155/2018/3075293

  5. Ni B, Pei W, Qu Y, Zhang R, Chu X, Wang Y, Huang X, You H (2021) MCC950, the NLRP3 Inhibitor, Protects against Cartilage Degradation in a Mouse Model of Osteoarthritis. Oxid Med Cell Longev 2021: 4139048. https://doi.org/10.1155/2021/4139048

  6. Scanzello CR (2017) Chemokines and inflammation in osteoarthritis: insights from patients and animal models. J Orthop Res 35:735–739. https://doi.org/10.1002/jor.23471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q (2020) The role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci 16:2675–2691. https://doi.org/10.7150/ijbs.46627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang H, Wen Y, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Ye T, Bai X, Xiao G, Wang M (2020) MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy 16:271–288. https://doi.org/10.1080/15548627.2019.1606647

    Article  CAS  PubMed  Google Scholar 

  9. Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D (2022) New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 10:1089668. https://doi.org/10.3389/fcell.2022.1089668

    Article  PubMed  PubMed Central  Google Scholar 

  10. Valenti MT, Dalle Carbonare L, Zipeto D, Mottes M (2021) Control of the Autophagy Pathway in Osteoarthritis: key regulators, therapeutic targets and therapeutic strategies. Int J Mol Sci 22. https://doi.org/10.3390/ijms22052700

    Article  Google Scholar 

  11. Yao X, Zhang J, Jing X, Ye Y, Guo J, Sun K, Guo F (2019) Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res 139:314–324. https://doi.org/10.1016/j.phrs.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  12. Zhou X, Li J, Zhou Y, Yang Z, Yang H, Li D, Zhang J, Zhang Y, Xu N, Huang Y, Jiang L (2020) Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging 12:20163–20183. https://doi.org/10.18632/aging.103731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jia S, Yang Y, Bai Y, Wei Y, Zhang H, Tian Y, Liu J, Bai L (2022) Mechanical stimulation protects against Chondrocyte Pyroptosis through Irisin-Induced suppression of PI3K/Akt/NF-κB Signal Pathway in Osteoarthritis. Front Cell Dev Biol 10:797855. https://doi.org/10.3389/fcell.2022.797855

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu K, He Y, Moqbel SAA, Zhou X, Wu L, Bao J (2021) SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. Int J Biol Macromol 175:351–360. https://doi.org/10.1016/j.ijbiomac.2021.02.029

    Article  CAS  PubMed  Google Scholar 

  15. Lan CN, Cai WJ, Shi J, Yi ZJ (2021) MAPK inhibitors protect against early–stage osteoarthritis by activating autophagy. Mol Med Rep 24. https://doi.org/10.3892/mmr.2021.12469

    Article  Google Scholar 

  16. Shi J, Zhang C, Yi Z, Lan C (2016) Explore the variation of MMP3, JNK, p38 MAPKs, and autophagy at the early stage of osteoarthritis. IUBMB Life 68:293–302. https://doi.org/10.1002/iub.1482

    Article  CAS  PubMed  Google Scholar 

  17. Heinonen J, Taipaleenmäki H, Roering P, Takatalo M, Harkness L, Sandholm J, Uusitalo-Järvinen H, Kassem M, Kiviranta I, Laitala-Leinonen T, AM Säämänen (2011) Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes. Osteoarthritis Cartilage 19:1026–1035. https://doi.org/10.1016/j.joca.2011.04.016

    Article  CAS  PubMed  Google Scholar 

  18. Hamdi TI, Gouissem (2022) Potential effect of Enterolactone and Raloxifene in reversing osteoarthritis markers in cultured human articular chondrocytes. ARP Rheumatol 1:30–41

    PubMed  Google Scholar 

  19. Heinonen J, Zhang FP, Surmann-Schmitt C, Honkala S, Stock M, Poutanen M, ,AM Säämänen (2017) Defects in chondrocyte maturation and secondary ossification in mouse knee joint epiphyses due to Snorc deficiency. Osteoarthritis Cartilage 25:1132–1142. https://doi.org/10.1016/j.joca.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  20. Aizah N, Chong PP, Kamarul T (2021) Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of Osteoarthritis. Cartilage 13:1322s–1333s. https://doi.org/10.1177/1947603519878479

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Al-Ani MK, Sha Y, Chi Q, Dong N, Yang L, Xu K (2019) Psoralen protects chondrocytes, exhibits anti-inflammatory Effects on Synoviocytes, and attenuates Monosodium Iodoacetate-Induced Osteoarthritis. Int J Biol Sci 15:229–238. https://doi.org/10.7150/ijbs.28830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He L, Pan Y, Yu J, Wang B, Dai G, Ying X (2021) Decursin alleviates the aggravation of osteoarthritis via inhibiting PI3K-Akt and NF-kB signal pathway. Int Immunopharmacol 97:107657. https://doi.org/10.1016/j.intimp.2021.107657

    Article  CAS  PubMed  Google Scholar 

  23. Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z Jr, Gukovsky I,AS Gukovskaya (2018) Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 154:689–703. https://doi.org/10.1053/j.gastro.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  24. Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA, LA Kirshenbaum (2021) Mitochondrial autophagy and cell survival is regulated by the circadian clock gene in cardiac myocytes during ischemic stress. Autophagy 17:3794–3812. https://doi.org/10.1080/15548627.2021.1938913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, G Xiao (2023) Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 8:56. https://doi.org/10.1038/s41392-023-01330-w

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liao S, Zheng Q, Shen H, Yang G, Xu Y, Zhang X, Ouyang H, Pan Z (2023) HECTD1-Mediated ubiquitination and degradation of Rubicon regulates Autophagy and Osteoarthritis Pathogenesis. Arthritis Rheumatol 75:387–400. https://doi.org/10.1002/art.42369

    Article  CAS  PubMed  Google Scholar 

  27. Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D (2022) Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 10:60. https://doi.org/10.1038/s41413-022-00226-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hodgkinson T, Kelly DC, Curtin CM, ,FJ O’Brien (2022) Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 18:67–84. https://doi.org/10.1038/s41584-021-00724-w

    Article  PubMed  Google Scholar 

  29. Xia B, Di C, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95:495–505. https://doi.org/10.1007/s00223-014-9917-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaiswal PK, Aljebali L, Gaumond MH, Oh CD, Yasuda H, Moffatt P (2020) Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 10:7790. https://doi.org/10.1038/s41598-020-64640-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Motta F, Barone E, Sica A, Selmi C (2023) Inflammaging and osteoarthritis. Clin Rev Allergy Immunol 64:222–238. https://doi.org/10.1007/s12016-022-08941-1

    Article  CAS  PubMed  Google Scholar 

  32. Knights AJ, Redding SJ, Maerz T (2023) Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol 35:128–134. https://doi.org/10.1097/bor.0000000000000923

    Article  PubMed  Google Scholar 

  33. Sun K, Luo J, Jing X, Xiang W, Guo J, Yao X, Liang S, Guo F, Xu T (2021) Hyperoside ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Phytomedicine 80:153387. https://doi.org/10.1016/j.phymed.2020.153387

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS (2019) MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 200:35–47. https://doi.org/10.1016/j.biomaterials.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  35. Sun Q, Zhen G, Li TP, Guo Q, Li Y, Su W, Xue P, Wang X, Wan M, Guan Y, Dong X, Li S, Cai M, Cao X (2021) Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. Elife 10. https://doi.org/10.7554/eLife.66532

    Article  Google Scholar 

  36. Zhu J, Zhen G, An S, Wang X, Wan M, Li Y, Chen Z, Guan Y, Dong X, Hu Y, Cao X (2020) Aberrant subchondral osteoblastic metabolism modifies na(V)1.8 for osteoarthritis. Elife 9. https://doi.org/10.7554/eLife.57656

    Article  Google Scholar 

  37. Sun Q, Zhang Y, Ding Y, Xie W, Li H, Li S, Li Y, Cai M (2022) Inhibition of PGE2 in Subchondral Bone attenuates Osteoarthritis. Cells 11. https://doi.org/10.3390/cells11172760

    Article  Google Scholar 

  38. Hu QM, Ecker (2021) Overview of MMP-13 as a Promising Target for the treatment of Osteoarthritis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22041742

    Article  Google Scholar 

  39. Yin WY, Lei (2018) Leonurine inhibits IL-1β induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharmacol 65:50–59. https://doi.org/10.1016/j.intimp.2018.08.035

    Article  CAS  PubMed  Google Scholar 

  40. Xu Z, Ke T, Zhang Y, Guo L, Chen F, He W (2021) Danshensu inhibits the IL-1β-induced inflammatory response in chondrocytes and osteoarthritis possibly via suppressing NF-κB signaling pathway. Mol Med 27:80. https://doi.org/10.1186/s10020-021-00329-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Z, Huang Z, Zhang H, Lu J, Tian Y, Piao S, Lin Z, Bai L (2021) Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov 7:346. https://doi.org/10.1038/s41420-021-00746-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420. https://doi.org/10.1038/nrrheum.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhong G, Long H, Ma S, Shunhan Y, Li J,J Yao (2019) miRNA-335-5p relieves chondrocyte inflammation by activating autophagy in osteoarthritis. Life Sci 226:164–172. https://doi.org/10.1016/j.lfs.2019.03.071

    Article  CAS  PubMed  Google Scholar 

  44. Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, X Sun (2020) Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 384:121390. https://doi.org/10.1016/j.jhazmat.2019.121390

    Article  CAS  PubMed  Google Scholar 

  45. Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Lu Y, Cheng J (2020) Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics 10:5829–5844. https://doi.org/10.7150/thno.44051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eitner A, Müller S, König C, Wilharm A, Raab R, Hofmann GO, Kamradt T, Schaible HG (2021) Inhibition of Inducible nitric oxide synthase prevents IL-1β-Induced mitochondrial dysfunction in human chondrocytes. Int J Mol Sci 22. https://doi.org/10.3390/ijms22052477

    Article  Google Scholar 

  47. Eitner A, Sparing S, Kohler FC, Müller S, Hofmann GO, Kamradt T, Schaible HG, M Aurich (2022) Osteoarthritis-Induced metabolic alterations of human hip chondrocytes. Biomedicines 10. https://doi.org/10.3390/biomedicines10061349

    Article  Google Scholar 

  48. Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV (2023) Mitochondrial dysfunction in Cardiac Arrhythmias. Cells 12. https://doi.org/10.3390/cells12050679

  49. Luis-García ER, Becerril C, Salgado-Aguayo A, Aparicio-Trejo OE, Romero Y, Flores-Soto E, Mendoza-Milla C, Montaño M, Chagoya V, Pedraza-Chaverri J, Hafidi ME, Orozco-Ibarra M, Pardo A, M Selman (2021) Mitochondrial dysfunction and alterations in mitochondrial permeability transition pore (mPTP) contribute to apoptosis resistance in idiopathic pulmonary fibrosis fibroblasts. Int J Mol Sci 22. https://doi.org/10.3390/ijms22157870

    Article  Google Scholar 

  50. Li F, Li J, Wang PH, Yang N, Huang J, Ou J, Xu T, Zhao X, Liu T, Huang X, Wang Q, Li M, Yang L, Lin Y, Cai Y, Chen H, Zhang Q (2021) SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis 1867:166260. https://doi.org/10.1016/j.bbadis.2021.166260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi X, Jie L, Wu P, Zhang N, Mao J, Wang P, Yin S (2022) Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways. J Ethnopharmacol 297:115536. https://doi.org/10.1016/j.jep.2022.115536

    Article  CAS  PubMed  Google Scholar 

  52. Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y (2022) Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 177:106092. https://doi.org/10.1016/j.phrs.2022.106092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee JH, Ko HJ, Woo ER, Lee SK, Moon BS, Lee CW, Mandava S, Samala M, Lee J, Kim HP (2016) Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-κB pathways in vitro and in vivo. Eur J Pharmacol 783:64–72. https://doi.org/10.1016/j.ejphar.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  54. Liu B, Hou Q, Ma Y, Han X (2020) HIPK3 mediates inflammatory cytokines and oxidative stress markers in Monocytes in a rat model of Sepsis through the JNK/c-Jun Signaling Pathway. Inflammation 43:1127–1142. https://doi.org/10.1007/s10753-020-01200-5

    Article  CAS  PubMed  Google Scholar 

  55. Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, Song B, Wu Q, Li L (2016) The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci Rep 6:19670. https://doi.org/10.1038/srep19670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu H, Hou G, Zhang Y, Dai Y, Zhao H (2014) c-Jun transactivates Puma gene expression to promote osteoarthritis. Mol Med Rep 9:1606–1612. https://doi.org/10.3892/mmr.2014.1981

    Article  CAS  PubMed  Google Scholar 

  57. Ye Z, Chen Y, Zhang R, Dai H, Zeng C, Zeng H, Feng H, Du G, Fang H, D Cai (2014) c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis. Can J Physiol Pharmacol 92:132–139. https://doi.org/10.1139/cjpp-2013-0228

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Yunnan Traumatology and Orthopedics Clinical Medical Center (Grant No. ZX20191001), the Grants from Yunnan Orthopedics and Sports Rehabilitation Clinical Medicine Research Center (Grant No. 202102AA310068) and Technical Innovation Talents Training Object Project (Grant No. 202005AD160146).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Zhifang Tang, Chuan Li; Methodology: Zhifang Tang, Hanzhen Feng; Investigation: Hanzhen Feng, Xusheng Chen; Visualization: Shuiyan Shao; Writing - original draft preparation: Zhifang Tang; Writing - revising: Xusheng Chen, Shuiyan Shao; Funding acquisition: Chuan Li; Supervision: Chuan Li. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chuan Li.

Ethics declarations

Competing interests

The authors declared no conflict of interest in this study.

Ethics approval

The experiment protocol involving in animals was approved by the ethics committee of 920th Hospital of Joint Logistics Support Force, PLA. All the operations involved in animals followed the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and ARRIVE Guidelines pertaining to animal experimentation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Feng, H., Chen, X. et al. SNORC knockdown alleviates inflammation, autophagy defect and matrix degradation of chondrocytes in osteoarthritis development. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04842-9

Keywords

Navigation