Skip to main content

Advertisement

Log in

Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607–797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A (2022) Hepatocellular carcinoma. Lancet (London, England) 400(10360):1345–1362. https://doi.org/10.1016/S0140-6736(22)01200-4

    Article  CAS  PubMed  Google Scholar 

  2. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, Okamoto E, Hayashi N, Hori M (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology (Baltimore) 27(4):951–958. https://doi.org/10.1002/hep.510270409

    Article  CAS  Google Scholar 

  3. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130(4):1117–1128. https://doi.org/10.1053/j.gastro.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  4. Delire B, Stärkel P (2015) The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 45(6):609–623. https://doi.org/10.1111/eci.12441

    Article  CAS  PubMed  Google Scholar 

  5. Simanshu DK, Nissley DV, McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170(1):17–33. https://doi.org/10.1016/j.cell.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. https://doi.org/10.1038/nrc3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC (1998) RasGRP, a Ras guanyl nucleotide-releasing protein with calcium and diacylglycerol-binding motifs. Science (New York) 280(5366):1082–1086. https://doi.org/10.1126/science.280.5366.1082

    Article  CAS  Google Scholar 

  8. Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J (2013) Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. Elife 2:e00813. https://doi.org/10.7554/eLife.00813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaulieu N, Zahedi B, Goulding RE, Tazmini G, Anthony KV, Omeis SL, de Jong DR, Kay RJ (2007) Regulation of RasGRP1 by B cell antigen receptor requires cooperativity between three domains controlling translocation to the plasma membrane. Mol Biol Cell 18(8):3156–3168. https://doi.org/10.1091/mbc.e06-10-0932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mues M, Roose JP (2017) Distinct oncogenic Ras signals characterized by profound differences in flux through the RasGDP/RasGTP cycle. Small GTPases 8(1):20–25. https://doi.org/10.1080/21541248.2016.1187323

    Article  CAS  PubMed  Google Scholar 

  11. Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, Platzer R, Pfajfer L, Bilic I, Ban SA, Willmann KL, Mukherjee M, Supper V, Hsu HT, Banerjee PP, Sinha P, McClanahan F, Zlabinger GJ, Pickl WF, Gribben JG, Boztug K (2016) RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 17(12):1352–1360. https://doi.org/10.1038/ni.3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luke CT, Oki-Idouchi CE, Cline JM, Lorenzo PS (2007) RasGRP1 overexpression in the epidermis of transgenic mice contributes to tumor progression during multistage skin carcinogenesis. Can Res 67(21):10190–10197. https://doi.org/10.1158/0008-5472.CAN-07-2375

    Article  CAS  Google Scholar 

  13. Sharma A, Fonseca LL, Rajani C, Yanagida JK, Endo Y, Cline JM, Stone JC, Ji J, Ramos JW, Lorenzo PS (2014) Targeted deletion of RasGRP1 impairs skin tumorigenesis. Carcinogenesis 35(5):1084–1091. https://doi.org/10.1093/carcin/bgu016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ksionda O, Melton AA, Bache J, Tenhagen M, Bakker J, Harvey R, Winter SS, Rubio I, Roose JP (2016) RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene 35(28):3658–3668. https://doi.org/10.1038/onc.2015.431

    Article  CAS  PubMed  Google Scholar 

  15. Tian XP, Cai J, Ma SY, Fang Y, Huang HQ, Lin TY, Rao HL, Li M, Xia ZJ, Kang TB, Xie D, Cai QQ (2020) BRD2 induces drug resistance through activation of the RasGRP1/Ras/ERK signaling pathway in adult T-cell lymphoblastic lymphoma. Cancer Commun (London, England) 40(6):245–259. https://doi.org/10.1002/cac2.12039

    Article  Google Scholar 

  16. Karra L, Romero-Moya D, Ksionda O, Krush M, Gu Z, Mues M, Depeille P, Mullighan C, Roose JP (2020) Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene 39(45):6920–6934. https://doi.org/10.1038/s41388-020-01469-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chou CW, Huang YM, Chang YJ, Huang CY, Hung CS (2021) Identified the novel resistant biomarkers for taxane-based therapy for triple-negative breast cancer. Int J Med Sci 18(12):2521–2531. https://doi.org/10.7150/ijms.59177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Depeille P, Henricks LM, van de Ven RA, Lemmens E, Wang CY, Matli M, Werb Z, Haigis KM, Donner D, Warren R, Roose JP (2015) RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol 17(6):804–815. https://doi.org/10.1038/ncb3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gbenedio OM, Bonnans C, Grun D, Wang CY, Hatch AJ, Mahoney MR, Barras D, Matli M, Miao Y, Garcia KC, Tejpar S, Delorenzi M, Venook AP, Nixon AB, Warren RS, Roose JP, Depeille P (2019) RasGRP1 is a potential biomarker to stratify anti-EGFR therapy response in colorectal cancer. JCI Insight 5(15):e127552. https://doi.org/10.1172/jci.insight.127552

    Article  PubMed  Google Scholar 

  20. Zhang X, Zhuang H, Han F, Shao X, Liu Y, Ma X, Wang Z, Qiang Z, Li Y (2018) Sp1-regulated transcription of RasGRP1 promotes hepatocellular carcinoma (HCC) proliferation. Liver Intl 38(11):2006–2017. https://doi.org/10.1111/liv.13757

    Article  CAS  Google Scholar 

  21. Wang C, Li X, Xue B, Yu C, Wang L, Deng R, Liu H, Chen Z, Zhang Y, Fan S, Zuo C, Sun H, Zhu H, Wang J, Tang S (2022) RasGRP1 promotes the acute inflammatory response and restricts inflammation-associated cancer cell growth. Nat Commun 13(1):7001. https://doi.org/10.1038/s41467-022-34659-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Csiszár A (2006) Structural and functional diversity of adaptor proteins involved in tyrosine kinase signalling. BioEssays 28(5):465–479. https://doi.org/10.1002/bies.20411

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7(344):re8. https://doi.org/10.1126/scisignal.2005189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Zhang X, Yang B, Zhuang H, Guo H, Wei W, Li Y, Chen R, Li Y, Zhang N (2018) Demethylation-induced overexpression of Shc3 drives c-Raf-independent activation of MEK/ERK in HCC. Can Res 78(9):2219–2232. https://doi.org/10.1158/0008-5472.CAN-17-2432

    Article  CAS  Google Scholar 

  25. Magrassi L, Conti L, Lanterna A, Zuccato C, Marchionni M, Cassini P, Arienta C, Cattaneo E (2005) Shc3 affects human high-grade astrocytomas survival. Oncogene 24(33):5198–5206. https://doi.org/10.1038/sj.onc.1208708

    Article  CAS  PubMed  Google Scholar 

  26. Miyake I, Hakomori Y, Misu Y, Nakadate H, Matsuura N, Sakamoto M, Sakai R (2005) Domain-specific function of ShcC docking protein in neuroblastoma cells. Oncogene 24(19):3206–3215. https://doi.org/10.1038/sj.onc.1208523

    Article  CAS  PubMed  Google Scholar 

  27. Terui E, Matsunaga T, Yoshida H, Kouchi K, Kuroda H, Hishiki T, Saito T, Yamada S, Shirasawa H, Ohnuma N (2005) Shc family expression in neuroblastoma: high expression of shcC is associated with a poor prognosis in advanced neuroblastoma. Clin Cancer Res 11(9):3280–3287. https://doi.org/10.1158/1078-0432.CCR-04-1681

    Article  CAS  PubMed  Google Scholar 

  28. Ortensi B, Osti D, Pellegatta S, Pisati F, Brescia P, Fornasari L, Levi D, Gaetani P, Colombo P, Ferri A, Nicolis S, Finocchiaro G, Pelicci G (2012) Rai is a new regulator of neural progenitor migration and glioblastoma invasion. Stem Cells (Dayton, Ohio) 30(5):817–832. https://doi.org/10.1002/stem.1056

    Article  CAS  PubMed  Google Scholar 

  29. Azzalin A, Moretti E, Arbustini E, Magrassi L (2014) Cell density modulates SHC3 expression and survival of human glioblastoma cells through Fak activation. J Neurooncol 120(2):245–256. https://doi.org/10.1007/s11060-014-1551-x

    Article  CAS  PubMed  Google Scholar 

  30. Zahedi B, Goo HJ, Beaulieu N, Tazmini G, Kay RJ, Cornell RB (2011) Phosphoinositide 3-kinase regulates plasma membrane targeting of the Ras-specific exchange factor RasGRP1. J Biol Chem 286(14):12712–12723. https://doi.org/10.1074/jbc.M110.189605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schüller AC, Ahmed Z, Levitt JA, Suen KM, Suhling K, Ladbury JE (2008) Indirect recruitment of the signalling adaptor Shc to the fibroblast growth factor receptor 2 (FGFR2). Biochem J 416(2):189–199. https://doi.org/10.1042/BJ20080887

    Article  CAS  PubMed  Google Scholar 

  32. Im YK, La Selva R, Gandin V, Ha JR, Sabourin V, Sonenberg N, Pawson T, Topisirovic I, Ursini-Siegel J (2015) The ShcA adaptor activates AKT signaling to potentiate breast tumor angiogenesis by stimulating VEGF mRNA translation in a 4E-BP-dependent manner. Oncogene 34(13):1729–1735. https://doi.org/10.1038/onc.2014.110

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Elmira E, Rohondia S, Wang J, Liu J, Dou QP (2018) A patent review of the ubiquitin ligase system: 2015–2018. Expert Opin Ther Pat 28(12):919–937. https://doi.org/10.1080/13543776.2018.1549229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, Chu CH, Huang HD, Ko MT, Hwang JK (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm322

    Article  PubMed  PubMed Central  Google Scholar 

  35. Terada LS (2019) Shc and the mechanotransduction of cellular anchorage and metastasis. Small GTPases 10(1):64–71. https://doi.org/10.1080/21541248.2016.1273172

    Article  CAS  PubMed  Google Scholar 

  36. Mao H, Yang W, Latour S, Yang J, Winter S, Zheng J, Ni K, Lv M, Liu C, Huang H, Chan KW, Pui-Wah Lee P, Tu W, Fischer A, Lau YL (2018) RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol 142(2):595-604.e16. https://doi.org/10.1016/j.jaci.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  37. Molineros JE, Singh B, Terao C, Okada Y, Kaplan J, McDaniel B, Akizuki S, Sun C, Webb CF, Looger LL, Nath SK (2019) Mechanistic characterization of RASGRP1 variants Identifies an hnRNP-K-regulated transcriptional enhancer contributing to SLE susceptibility. Front Immunol 10:1066. https://doi.org/10.3389/fimmu.2019.01066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roose JP, Mollenauer M, Gupta VA, Stone J, Weiss A (2005) A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol 25(11):4426–4441. https://doi.org/10.1128/MCB.25.11.4426-4441.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rambaratsingh RA, Stone JC, Blumberg PM, Lorenzo PS (2003) RasGRP1 represents a novel non-protein kinase C phorbol ester signaling pathway in mouse epidermal keratinocytes. J Biol Chem 278(52):52792–52801. https://doi.org/10.1074/jbc.M308240200

    Article  CAS  PubMed  Google Scholar 

  40. Tazmini G, Beaulieu N, Woo A, Zahedi B, Goulding RE, Kay RJ (2009) Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain. Biochem Biophys Acta 1793(3):447–461. https://doi.org/10.1016/j.bbamcr.2008.12.019

    Article  CAS  PubMed  Google Scholar 

  41. Pelicci G, Troglio F, Bodini A, Melillo RM, Pettirossi V, Coda L, De Giuseppe A, Santoro M, Pelicci PG (2002) The neuron-specific Rai (ShcC) adaptor protein inhibits apoptosis by coupling Ret to the phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 22(20):7351–7363. https://doi.org/10.1128/MCB.22.20.7351-7363.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Falco V, Guarino V, Malorni L, Cirafici AM, Troglio F, Erreni M, Pelicci G, Santoro M, Melillo RM (2005) RAI(ShcC/N-Shc)-dependent recruitment of GAB 1 to RET oncoproteins potentiates PI 3-K signalling in thyroid tumors. Oncogene 24(41):6303–6313. https://doi.org/10.1038/sj.onc.1208776

    Article  CAS  PubMed  Google Scholar 

  43. Heinrich JN, Kwak SP, Howland DS, Chen J, Sturner S, Sullivan K, Lipinski K, Cheng KY, She Y, Lo F, Ghavami A (2006) Disruption of ShcA signaling halts cell proliferation–characterization of ShcC residues that influence signaling pathways using yeast. Cell Signal 18(6):795–806. https://doi.org/10.1016/j.cellsig.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  44. Azzalin A, Brambilla F, Arbustini E, Basello K, Speciani A, Mauri P, Bezzi P, Magrassi L (2020) A new pathway promotes adaptation of human glioblastoma cells to glucose starvation. Cells 9(5):1249. https://doi.org/10.3390/cells9051249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding H, Peterson KL, Correia C, Koh B, Schneider PA, Nowakowski GS, Kaufmann SH (2017) Histone deacetylase inhibitors interrupt HSP90•RASGRP1 and HSP90•CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells. Leukemia 31(7):1593–1602. https://doi.org/10.1038/leu.2016.357

    Article  CAS  PubMed  Google Scholar 

  46. Zhuang H, Li Q, Zhang X, Ma X, Wang Z, Liu Y, Yi X, Chen R, Han F, Zhang N, Li Y (2018) Downregulation of glycine decarboxylase enhanced cofilin-mediated migration in hepatocellular carcinoma cells. Free Radical Biol Med 120:1–12. https://doi.org/10.1016/j.freeradbiomed.2018.03.003

    Article  CAS  Google Scholar 

  47. Liu Y, Zhuang H, Cao F, Li J, Guo Y, Zhang J, Zhao Q, Liu Y (2021) Shc3 promotes hepatocellular carcinoma stemness and drug resistance by interacting with β-catenin to inhibit its ubiquitin degradation pathway. Cell Death Dis 12(3):278. https://doi.org/10.1038/s41419-021-03560-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin M, Xin Y, Bian Y, Yang X, Xi T, Xiong J (2022) Phosphorylation-induced ubiquitination and degradation of PXR through CDK2-TRIM21 axis. Cells 11(2):264. https://doi.org/10.3390/cells11020264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen Z, Morales JE, Guerrero PA, Sun H, McCarty JH (2018) PTPN12/PTP-PEST regulates phosphorylation-dependent ubiquitination and stability of focal adhesion substrates in invasive glioblastoma cells. Can Res 78(14):3809–3822. https://doi.org/10.1158/0008-5472.CAN-18-0085

    Article  CAS  Google Scholar 

  50. Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A (2007) Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 27(7):2732–2745. https://doi.org/10.1128/MCB.01882-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hartzell C, Ksionda O, Lemmens E, Coakley K, Yang M, Dail M, Harvey RC, Govern C, Bakker J, Lenstra TL, Ammon K, Boeter A, Winter SS, Loh M, Shannon K, Chakraborty AK, Wabl M, Roose JP (2013) Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal 6(268):ra21. https://doi.org/10.1126/scisignal.2003848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. NSFC81800165), and Tianjin First Central Hospital Science and Technology Fund (Grant No. 2019CM02).

Author information

Authors and Affiliations

Authors

Contributions

XZ, YL, and HG: conceived and designed the project. XZ and YL: carried out the molecular and cellular biology experiment with assistance from RY, YG, MY, YX, YD, RZ, and YQ. YB and YZ: statistical analysis and artworks were performed with assistance from XZ. XZ and HG: the manuscript was written.

Corresponding author

Correspondence to Huier Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2023_4839_MOESM1_ESM.tif

Supplementary file1 A Western blot of RasGRP1 in Shc3-knockdown HCCLM3 and HepG2 cells. B The relative mRNA expression levels of RasGRP1 in Shc3-knockdown HCCLM3 and HepG2 cells. Data were normalized to scramble. Data are from three independent experiments. N.S., not significant, error bars denote mean±SD (TIF 2608 KB)

11010_2023_4839_MOESM2_ESM.tif

Supplementary file2 A The relative mRNA expression levels of Shc3 in Shc3-overexpressing Huh7 and HepG2 cells. B The relative mRNA expression levels of Shc3 in Shc3-knockdwon HCCLM3 and HepG2 cells. C The relative mRNA expression levels of RasGRP1 and Shc3 in Shc3-overexpressing Huh7 cells transfected with RasGRP1 siRNAs. D Western blot of Shc3 in Shc3-knockdown HepG2 cells. Data are from three independent experiment (TIF 7463 KB)

11010_2023_4839_MOESM3_ESM.tif

Supplementary file3 A Western blots of PCNA and β-actin (upper), and the relative intensity of PCNA (bottom) in Shc3-overexpressing Huh7 and HepG2 cells. B Western blots of PCNA and β-actin (upper), and the relative intensity of PCNA (bottom) in Shc3-knockdown HCCLM3 and HepG2 cells. Data are from three independent experiments. *P < 0.05, **P < 0.01, error bars denote mean±SD (TIF 9505 KB)

11010_2023_4839_MOESM4_ESM.tif

Supplementary file4 Tumor volumes of xenograft models in Shc3-overexpression group and pCDH group (n = 5). *P < 0.05, error bars denote mean±SD (TIF 1228 KB)

Supplementary file5 (DOC 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, Y., Yang, R. et al. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04839-4

Keywords

Navigation