Skip to main content

Advertisement

Log in

TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-κB/NLRP3 pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Accumulating data have revealed the pivotal function of tripartite motif protein 38 (TRIM38) in tumors. In view of this, this investigation aims to explore the function and potential mechanism of TRIM38 in non-small cell lung cancer (NSCLC). A xenotypic tumor model was established in vivo by subcutaneously injecting NSCLC cells (2 × 106 cells) in tail vein of each mouse. Relative expression of TRIM38 mRNA was detected via quantitative real-time polymerase chain reaction (qRT-PCR). For exploring the role of TRIM38 in vivo and in vitro, mice or NSCLC cells were divided into two groups: the vector group and the TRIM38 overexpression group. Also, protein expression levels of TRIM38, Vimentin, E-cadherin, and N-cadherin were determined using western blotting and immunohistochemistry staining. Tumor nodules of mouse lung tissues were assessed via performing H&E staining. Moreover, proliferation of NSCLC cells was evaluated through colony formation and CCK-8 assays. Further, migration and invasion of NSCLC cells were assessed through wound healing and transwell assays. Protein levels of pathway-related proteins including p-p65, p65, IκB, p-IκB, p-AMPK, AMPK, and NLRP3 were examined through western blotting analysis. Tumor lung tissues of mice and NSCLC cells showed low protein and mRNA expression of TRIM38. Functionally, up-regulation of TRIM38 reduced the number of tumor nodules and suppressed epithelial-to-mesenchymal transition (EMT) in lung tissues of mice. Furthermore, up-regulation of TRIM38 in NSCLC cells inhibited migration, invasion, EMT, and proliferation. With respect to the mechanism, in vivo experiments, the inhibitory effects of TRIM38 overexpression on tumor nodules, and EMT were reversed by AMPK inhibitor. In vitro experiments, TRIM38 overexpression caused down-regulation of p-IκB and p-p65 as well as up-regulation of p-AMPK. The inhibitory effects of TRIM38 overexpression on migration, proliferation, invasion, and EMT of NSCLC cells were reversed by overexpression of NLRP3. Concurrently, AMPK inhibitor enhanced the TRIM38-overexpressed NSCLC cell’s abilities in migration, clone formation, invasion, and proliferation. TRIM38 regulated the AMPK/NF-κB/NLRP3 pathway to suppress the NSCLC’s progression and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  2. Boloker G, Wang C, Zhang J (2019) Erratum to updated statistics of lung and bronchus cancer in United States (2018). J Thorac Dis 11:E63

    Article  PubMed Central  PubMed  Google Scholar 

  3. Youlden DR, Cramb SM, Baade PD (2008) The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J Thorac Oncol 3:819–831

    Article  PubMed  Google Scholar 

  4. Arbour KC, Riely GJ (2019) Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA 322:764–774

    Article  CAS  PubMed  Google Scholar 

  5. Imyanitov EN, Iyevleva AG, Levchenko EV (2021) Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives. Crit Rev Oncol Hematol 157:103194

    Article  PubMed  Google Scholar 

  6. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Article  PubMed  Google Scholar 

  7. Rakaee M, Busund LT, Paulsen EE, Richardsen E, Al-Saad S, Andersen S, Donnem T, Bremnes RM, Kilvaer TK (2016) Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer. Oncotarget 7:72184–72196

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chen VW, Ruiz BA, Hsieh MC, Wu XC, Ries LA, Lewis DR (2014) Analysis of stage and clinical/prognostic factors for lung cancer from SEER registries: AJCC staging and collaborative stage data collection system. Cancer 120(Suppl 23):3781–3792

    Article  PubMed  Google Scholar 

  9. Liu X, Lei X, Zhou Z, Sun Z, Xue Q, Wang J, Hung T (2011) Enterovirus 71 induces degradation of TRIM38, a potential E3 ubiquitin ligase. Virol J 8:61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jia X, Zhao C, Zhao W (2021) Emerging roles of MHC class I region-encoded E3 ubiquitin ligases in innate immunity. Front Immunol 12:687102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hu MM, Shu HB (2017) Multifaceted roles of TRIM38 in innate immune and inflammatory responses. Cell Mol Immunol 14:331–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hu S, Li Y, Wang B, Peng K (2021) TRIM38 protects chondrocytes from IL-1beta-induced apoptosis and degeneration via negatively modulating nuclear factor (NF)-kappaB signaling. Int Immunopharmacol 99:108048

    Article  CAS  PubMed  Google Scholar 

  13. Hu MM, Yang Q, Zhang J, Liu SM, Zhang Y, Lin H, Huang ZF, Wang YY, Zhang XD, Zhong B, Shu HB (2014) TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3. Proc Natl Acad Sci U S A 111:1509–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liang H, Huang C (2020) Identification of tumor microenvironment-related genes in lower-grade gliomas by mining TCGA database. Transl Cancer Res 9:4583–4595

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wang X, He H, Rui W, Zhang N, Zhu Y, Xie X (2021) TRIM38 triggers the uniquitination and degradation of glucose transporter type 1 (GLUT1) to restrict tumor progression in bladder cancer. J Transl Med 19:508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Aljabban J, Syed S, Syed S, Rohr M, Weisleder N, McElhanon KE, Hasan L, Safeer L, Hoffman K, Aljabban N, Mukhtar M, Adapa N, Allarakhia Z, Panahiazar M, Neuhaus I, Kim S, Hadley D, Jarjour W (2020) Investigating genetic drivers of dermatomyositis pathogenesis using meta-analysis. Heliyon 6:e04866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Waldman R, DeWane ME, Lu J (2020) Dermatomyositis: Diagnosis and treatment. J Am Acad Dermatol 82:283–296

    Article  PubMed  Google Scholar 

  18. Bolko L, Gitiaux C, Allenbach Y (2019) [Dermatomyositis: new antibody, new classification]. Med Sci (Paris) 35 Hors serie n degrees 2:18–23

  19. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  PubMed  Google Scholar 

  20. Courtois G, Gilmore TD (2006) Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25:6831–6843

    Article  CAS  PubMed  Google Scholar 

  21. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB (2003) TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 326:105–115

    Article  CAS  PubMed  Google Scholar 

  22. Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A, Magalhaes KG (2021) NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci 28:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liang M, Chen X, Wang L, Qin L, Wang H, Sun Z, Zhao W, Geng B (2020) Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J Exp Clin Cancer Res 39:176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yuan R, Zhao W, Wang QQ, He J, Han S, Gao H, Feng Y, Yang S (2021) Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res 170:105748

    Article  CAS  PubMed  Google Scholar 

  25. Platnich JM, Chung H, Lau A, Sandall CF, Bondzi-Simpson A, Chen HM, Komada T, Trotman-Grant AC, Brandelli JR, Chun J, Beck PL, Philpott DJ, Girardin SE, Ho M, Johnson RP, MacDonald JA, Armstrong GD, Muruve DA (2018) Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep 25:1525-1536.e7

    Article  CAS  PubMed  Google Scholar 

  26. Teng JF, Mei QB, Zhou XG, Tang Y, Xiong R, Qiu WQ, Pan R, Law BY, Wong VK, Yu CL, Long HA, Xiao XL, Zhang F, Wu JM, Qin DL, Wu AG (2020) Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-kappaB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers (Basel) 12(1):193

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, Zhang X, Li Y (2022) Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-kappaB/NLRP3 inflammasome pathway. Front Immunol 13:867516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Uthman L, Kuschma M, Romer G, Boomsma M, Kessler J, Hermanides J, Hollmann MW, Preckel B, Zuurbier CJ, Weber NC (2021) novel anti-inflammatory effects of canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human coronary artery endothelial cells. Cardiovasc Drugs Ther 35:1083–1094

    Article  CAS  PubMed  Google Scholar 

  29. Poma P (2020) NF-kappaB and disease. Int J Mol Sci 21(3):9181

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dong J, Peng H, Yang X, Wu W, Zhao Y, Chen D, Chen L, Liu J (2020) Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells. Anticancer Drugs 31:345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim K, Kim JH, Kim I, Seong S, Kim N (2018) TRIM38 regulates NF-kappaB activation through TAB2 degradation in osteoclast and osteoblast differentiation. Bone 113:17–28

    Article  CAS  PubMed  Google Scholar 

  32. Lu Z, Deng M, Ma G, Chen L (2022) TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF-kappaB signalling pathway. PeerJ 10:e13815

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zheng Z, Bian Y, Zhang Y, Ren G, Li G (2020) Metformin activates AMPK/SIRT1/NF-kappaB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle 19:1089–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, Zhao Y, Zhou K, Lou Y (2020) Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol 13:58

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ettinger DS, Wood DE, Aggarwal C, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D’Amico TA, Dilling TJ, Dobelbower M, Gettinger S, Govindan R, Gubens MA, Hennon M, Horn L, Lackner RP, Lanuti M, Leal TA, Lin J, Loo BW Jr, Martins RG, Otterson GA, Patel SP, Reckamp KL, Riely GJ, Schild SE, Shapiro TA, Stevenson J, Swanson SJ, Tauer KW, Yang SC, Gregory K, Ocn HM (2019) NCCN guidelines insights: non-small cell lung cancer, version 1.2020. J Natl Compr Canc Netw 17:1464–1472

    Article  PubMed  Google Scholar 

  36. Proto C, Ferrara R, Signorelli D, Lo Russo G, Galli G, Imbimbo M, Prelaj A, Zilembo N, Ganzinelli M, Pallavicini LM, De Simone I, Colombo MP, Sica A, Torri V, Garassino MC (2019) Choosing wisely first line immunotherapy in non-small cell lung cancer (NSCLC): what to add and what to leave out. Cancer Treat Rev 75:39–51

    Article  CAS  PubMed  Google Scholar 

  37. Cao J, Su B, Peng R, Tang H, Tu D, Tang Y, Zhou J, Jiang G, Jin S, Wang Q, Wang A, Liu R, Deng Q, Zhang C, Bai D (2022) Bioinformatics analysis of immune infiltrates and tripartite motif (TRIM) family genes in hepatocellular carcinoma. J Gastrointest Oncol 13:1942–1958

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bess E, Fisslthaler B, Fromel T, Fleming I (2011) Nitric oxide-induced activation of the AMP-activated protein kinase alpha2 subunit attenuates IkappaB kinase activity and inflammatory responses in endothelial cells. PLoS ONE 6:e20848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhang Y, Qiu J, Wang X, Zhang Y, Xia M (2011) AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arterioscler Thromb Vasc Biol 31:2897–2908

    Article  CAS  PubMed  Google Scholar 

  40. Haneklaus M, O’Neill LA, Coll RC (2013) Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol 25:40–45

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KHZ and MRL designed the study; GHL, ZKN, and SJ collected the data; XHB, ZTL, and MRL analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingru Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

For conducting animal experiments, Institutional Animal Care and Use Committee’s guidelines from Beijing Viewsolid Biotechnology Co. LTD were followed (VS212601456).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Lin, G., Nie, Z. et al. TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-κB/NLRP3 pathway. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04823-y

Keywords

Navigation