Skip to main content

Advertisement

Log in

Circ_0090231 knockdown protects vascular smooth muscle cells from ox-LDL-induced proliferation, migration and invasion via miR-942-5p/PPM1B axis during atherosclerosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is a dominant pathological basis of cardiovascular disease. Circular RNAs (circRNAs) have been proposed to have crucial functions in regulating pathological progressions of AS. Hence, the aim of this study was to investigate the potential function of circ_0090231 in AS progression. Oxidized low densitylipoprotein (ox-LDL)-challenged vascular smooth muscle cells (VSMCs) were used for in vitro functional analysis. Levels of genes and proteins were measured by qRT-PCR and Western blot. The proliferation, migration and invasion were assessed using cell counting kit-8, 5-ethynyl-2’-deoxyuridine, and transwell assays. The interaction between miR-942-5p and circ_0090231 or PPM1B (Protein Phosphatase, Mg2+/Mn2+ Dependent 1B) was evaluated by dual-luciferase reporter and pull-down assays. Circ_0090231 is a stable circRNA, and was increased in the serum of AS patients and ox-LDL-challenged VSMCs. Functionally, silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs. Mechanistically, circ_0090231 directly targeted miR-942-5p, and PPM1B was a target of miR-942-5p. Besides, circ_0090231 sequestered miR-942-5p to release PPM1B expression, suggesting the circ_0090231/miR-942-5p/PPM1B axis. Further rescue experiments showed that miR-942-5p inhibition or ectopic overexpression of PPM1B dramatically attenuated the suppressing influences of circ_0090231 knockdown on VSMC proliferative, migratory and invasive abilities under ox-LDL treatment. Silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs via miR-942-5p/PPM1B axis, providing a theoretical basis for elucidating the mechanism of AS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kobiyama K, Ley K (2018) Atheroscler Circ Res 123(10):1118–1120

    Article  CAS  Google Scholar 

  2. Khyzha N, Alizada A, Wilson MD, Fish JE (2017) Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med 23(4):332–347

    Article  CAS  PubMed  Google Scholar 

  3. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8 Suppl):C7–12

    Article  CAS  PubMed  Google Scholar 

  4. Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451(7181):953–957

    Article  CAS  PubMed  Google Scholar 

  5. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu R, Leslie KL, Martin KA (2015) Epigenetic regulation of smooth muscle cell plasticity. Biochim Biophys Acta 1849(4):448–453

    Article  CAS  PubMed  Google Scholar 

  7. Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Qi X, Liu L, Hu X, Liu J, Yang J et al (2019) Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucl Acids 16:589–596

    Article  CAS  Google Scholar 

  11. Zhang Y, Chen Y, Wan Y, Zhao Y, Wen Q, Tang X et al (2021) Circular RNAs in the regulation of oxidative stress. Front Pharmacol 12:697903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao Q, Guo Z, Du S, Ling H, Song C (2020) Circular RNAs in the pathogenesis of atherosclerosis. Life Sci 255:117837

    Article  CAS  PubMed  Google Scholar 

  13. Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL (2019) Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 115(12):1732–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen L, Hu Y, Lou J, Yin S, Wang W, Wang Y et al (2019) CircRNA–0044073 is upregulated in atherosclerosis and increases the proliferation and invasion of cells by targeting miR–107. Mol Med Rep 19(5):3923–3932

    CAS  PubMed  Google Scholar 

  15. Wen Y, Chun Y, Lian ZQ, Yong ZW, Lan YM, Huan L et al (2021) circRNA–0006896–miR1264–DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep 23(5):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ge Y, Liu W, Yin W, Wang X, Wang J, Zhu X et al (2021) Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells. Bioengineered 12(2):10837–10848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frohlich J, Al-Sarraf A (2013) Cardiovascular risk and atherosclerosis prevention. Cardiovasc Pathol 22(1):16–18

    Article  PubMed  Google Scholar 

  18. Altesha MA, Ni T, Khan A, Liu K, Zheng X (2019) Circular RNA in cardiovascular disease. J Cell Physiol 234(5):5588–5600

    Article  CAS  PubMed  Google Scholar 

  19. Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K et al (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113(3):298–309

    CAS  PubMed  Google Scholar 

  20. Kattoor AJ, Kanuri SH, Mehta JL (2019) Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 26(9):1693–1700

    Article  CAS  PubMed  Google Scholar 

  21. Strzalka W, Ziemienowicz A (2011) Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 107(7):1127–1140

    Article  CAS  PubMed  Google Scholar 

  22. Lu QB, Wan MY, Wang PY, Zhang CX, Xu DY, Liao X et al (2018) Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol 14:656–668

    Article  CAS  PubMed  Google Scholar 

  23. Pietruszewska W, Bojanowska-Poźniak K, Kobos J (2016) Matrix metalloproteinases MMP1, MMP2, MMP9 and their tissue inhibitors TIMP1, TIMP2, TIMP3 in head and neck cancer: an immunohistochemical study. Otolaryngol Pol 70(3):32–43

    Article  PubMed  Google Scholar 

  24. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  25. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    Article  CAS  PubMed  Google Scholar 

  27. Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J (2020) Oxidative stress-responsive microRNAs in heart injury. Int J Mol Sci 21(1):358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Essandoh K, Li Y, Huo J, Fan GC (2016) MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 46(2):122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeng Z, Xia L, Fan X, Ostriker AC, Yarovinsky T, Su M et al (2019) Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair. J Clin Invest 129(3):1372–1386

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Li H, Zhang Y, Liu Q, Sun X, He X et al (2021) Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL. Cell Tissue Res 383(3):1155–1165

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Mao K, Liu S, Xu Y, Ren J (2021) Mir-942-5p promotes the proliferation and invasion of human melanoma cells by targeting DKK3. J Recept Signal Transduct Res 41(2):180–187

    Article  CAS  PubMed  Google Scholar 

  32. Zhou L, Chen Q, Wu J, Yang J, Yin H, Tian J et al (2021) Mir-942-5p inhibits proliferation, metastasis, and epithelial-mesenchymal transition in colorectal cancer by targeting CCBE1. Biomed Res Int 2021:9951405

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Cui D, Yan F, Yang L, Huang B (2022) Circ_0007919 exerts an anti-tumor role in colorectal cancer through targeting miR-942-5p/TET1 axis. Pathol Res Pract 229

    Article  CAS  PubMed  Google Scholar 

  34. Wan H, You T, Luo W (2021) circ_0003204 regulates cell growth, oxidative stress, and inflammation in ox-LDL-induced vascular endothelial cells via regulating miR-942-5p/HDAC9 axis. Front Cardiovasc Med 8:646832

    Article  PubMed  PubMed Central  Google Scholar 

  35. Watanabe T, Ohnishi M, Kobayashi T, Oishi M, Tamura S (1996) The mouse protein phosphatase 2Cbeta (Ppm1b) gene maps to the distal part of mouse chromosome 17. Genomics 33(1):147–149

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Sun R, Liu L (2019) Potentially critical roles of TNPO1, RAP1B, ZDHHC17, and PPM1B in the progression of coronary atherosclerosis through microarray data analysis. J Cell Biochem 120(3):4301–4311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BH designed and supervised the study. JY and XL conducted the experiments and drafted the manuscript. YZ and PC collected and analyzed the data. WQ contributed the methodology. XW and YL operated the software and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bing Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

The procedure of the experiment was approved by the Ethics Committee of Affiliated Renhe Hospital of China Three Gorges University and was carried out according to the guidelines of Declaration of Helsinki. Written informed consent was collected from all participants before sample collection.

Consent for publication

Not applicable.

Consent to participate

The procedure of the experiment was approved by the Ethics Committee of Affiliated Renhe Hospital of China Three Gorges University and was carried out according to the guidelines of Declaration of Helsinki. Written informed consent was collected from all participants before sample collection.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14.2 kb)

Supplementary material 2 (PDF 362.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, X., Zhang, Y. et al. Circ_0090231 knockdown protects vascular smooth muscle cells from ox-LDL-induced proliferation, migration and invasion via miR-942-5p/PPM1B axis during atherosclerosis. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04811-2

Keywords

Navigation