Skip to main content

Advertisement

Log in

Connecting the mechanisms of tumor sex differences with cancer therapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sex differences in cancer incidence and survival are constant and pronounced globally, across all races and all age groups of cancer types. In 2016, after the National Institutes of Health proposed a policy of utilizing sex as a biological variable, researchers started paying more attention to the molecular mechanisms behind gender variations in cancer. Historically, most previous studies investigating sex differences have been centered on gonadal sex hormones. Nevertheless, sex differences also involve genetic and molecular pathways that run throughout the entire process of cancer cell proliferation, metastasis, and treatment response, in addition to sex hormones. In particular, there is significant gender dimorphism in the efficacy and toxicity of oncology treatments, including conventional radiotherapy and chemotherapy, as well as the emerging targeted therapies and immunotherapy. To be clear, not all mechanisms will exhibit gender bias, and not all gender bias will affect cancer risk. Our goal in this review is to discuss some of the significant sex-related changes in fundamental cancer pathways. To this purpose, we summarize the differential impact of gender on cancer development in three dimensions: sex hormones, genetics, and epigenetics, and focus on current hot subjects including tumor suppressor function, immunology, stem cell renewal, and non-coding RNAs. Clarifying the essential mechanisms of gender differences will help guide the clinical treatment of both sexes in tumor radiation and chemotherapy, medication therapy with various targets, immunotherapy, and even drug development. We anticipate that sex-differentiated research will help advance sex-based cancer personalized medicine models and encourage future basic scientific and clinical research to take sex into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not Applicable.

Abbreviations

HCC:

Hepatocellular carcinoma

SNV:

Single nucleotide variant

CNA:

Copy number alteration

DMGs:

Differentially methylated genes

IGF-2:

Insulin growth factor-2

CSCs:

Cancer stem cells

HSCs:

Hematopoietic stem cells

HSCT:

Hematopoietic stem cell transplantation

MM:

Multiple myeloma

E2:

Estradiol

IL:

Interleukin

UPR:

Unfolded protein response

ER:

Estrogen receptor

AR:

Androgen receptor

TLR:

Toll-like receptor

AID:

Acquired immunodeficiency disease

MAMPs:

Microbial associated molecular patterns

DCs:

Dendritic cells

APCs:

Antigen-presenting cells

B7-H1:

B7-homologue 1

mTOR:

Mammalian target of rapamycin

Treg:

T regulatory cell

NK:

Natural killer

CTL:

Cytotoxic T lymphocyte

ADT:

Androgen deprivation therapy

TMZ:

Temozolomide

miRs:

MicroRNAs

XIAP:

X-linked inhibitor of apoptosis protein

lncRNA:

Long non-coding RNA

ESRRG:

Estrogen related receptor gamma

XCI:

X chromosome inactivation

XIC:

X inactivation centre

EXITs:

Escape from X-inactivation tumour suppressors

PAR:

Pseudoautosomal region

BCa:

Bladder cancer

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

NSCLC:

Non-small cell lung carcinoma

ALT:

Alternative lengthening of telomere

NEM:

Non-expression mutation

TSGs:

Tumor suppressor genes

NTDs:

Neural tube defects

G6PD:

Glucose-6-phosphate dehydrogenase

HLA-C:

Human leukocyte antigen C

MSI:

Microsatellite instability

iFOBT:

Immunochemical fecal occult blood testing

PD-1:

Programmed cell death receptor 1

PD-L1:

PD-1 ligand

HIF:

Hypoxia-inducible factor

STAT3:

Signal transducer and activator of transcription-3

PTEN:

Phosphatase and tensin homolog

OSCC:

Oral squamous cell carcinoma

EMT:

Epithelial to mesenchymal transition

CCND2:

Cyclin D2

Dnmts:

DNA methyltransferases

PTC:

Papillary thyroid carcinoma

iPSCS:

Induced pluripotent stem cells

HDAC:

Histone deacetylase

eNSC:

Embryonic neural stem cell

FFM:

Free fat mass

MDSC:

Myeloid-derived suppressor cell

P-GP:

P-glycoprotein

LOY:

Loss of the Y chromosome

EDY:

Extreme downregulation of Y chromosome

ICB:

Immune checkpoint blockade

CTLA-4:

Cytotoxic T lymphocyte antigen 4

TME:

Tumor microenvironment

TMB:

Tumor mutation burden

CYT:

Cytolytic activity

References

  1. Dong M, Cioffi G, Wang J, Waite KA, Ostrom QT, Kruchko C, Lathia JD, Rubin JB, Berens ME, Connor J, Barnholtz-Sloan JS (2020) Sex differences in cancer incidence and survival: a pan-cancer analysis. Cancer Epidemiol Biomark Prev 29:1389–1397. https://doi.org/10.1158/1055-9965.EPI-20-0036

    Article  Google Scholar 

  2. Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni M, Montironi R (2020) Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells 9:2653. https://doi.org/10.3390/cells9122653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Samavat H, Kurzer MS (2015) Estrogen metabolism and breast cancer. Cancer Lett 356:231–243. https://doi.org/10.1016/j.canlet.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  4. Huang FY, Wong DK, Seto WK, Lai CL, Yuen MF (2015) Estradiol induces apoptosis via activation of miRNA-23a and p53: implication for gender difference in liver cancer development. Oncotarget 6:34941–52. https://doi.org/10.18632/oncotarget.5472

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li CH, Haider S, Shiah YJ, Thai K, Boutros PC (2018) Sex differences in cancer driver genes and biomarkers. Cancer Res 78:5527–5537. https://doi.org/10.1158/0008-5472.CAN-18-0362

    Article  CAS  PubMed  Google Scholar 

  6. McCarthy NS, Melton PE, Cadby G, Yazar S, Franchina M, Moses EK, Mackey DA, Hewitt AW (2014) Meta-analysis of human methylation data for evidence of sex-specific autosomal patterns. BMC Genomics 15:981. https://doi.org/10.1186/1471-2164-15-981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Unger JM, Vaidya R, Albain KS, LeBlanc M, Minasian LM, Gotay CC, Henry NL, Fisch MJ, Lee SM, Blanke CD, Hershman DL (2022) Sex differences in risk of severe adverse events in patients receiving immunotherapy, targeted therapy, or chemotherapy in cancer clinical trials. J Clin Oncol 40:1474–1486. https://doi.org/10.1200/JCO.21.02377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Finlay-Schultz J, Sartorius CA (2015) Steroid hormones, steroid receptors, and breast cancer stem cells. J Mammary Gland Biol Neoplasia 20:39–50. https://doi.org/10.1007/s10911-015-9340-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zamani ARN, Avci CB, Ahmadi M, Pouyafar A, Bagheri HS, Fathi F, Heidarzadeh M, Rezaie J, Mirhosseini Y, Saberianpour S, Mehdizadeh A, Sokullu E, Talebi M, Rahbarghazi R (2020) Estradiol modulated colorectal cancer stem cells bioactivity and interaction with endothelial cells. Life Sci 257:118078. https://doi.org/10.1016/j.lfs.2020.118078

    Article  CAS  PubMed  Google Scholar 

  10. Notta F, Doulatov S, Dick JE (2010) Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients. Blood 115:3704–3707. https://doi.org/10.1182/blood-2009-10-249326

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TS, Chidgey AP, Boyd RL (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80:1604–1613. https://doi.org/10.1097/01.tp.0000183962.64777.da

    Article  PubMed  Google Scholar 

  12. Chapple RH, Hu T, Tseng YJ, Liu L, Kitano A, Luu V, Hoegenauer KA, Iwawaki T, Li Q, Nakada D (2018) ERalpha promotes murine hematopoietic regeneration through the Ire1alpha-mediated unfolded protein response. Elife. https://doi.org/10.7554/eLife.31159

    Article  PubMed  PubMed Central  Google Scholar 

  13. Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA, Young NS (2009) Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114:2236–2243. https://doi.org/10.1182/blood-2008-09-178871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rizzetto L, Fava F, Tuohy KM, Selmi C (2018) Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 92:12–34. https://doi.org/10.1016/j.jaut.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  15. Gomez A, Luckey D, Taneja V (2015) The gut microbiome in autoimmunity: sex matters. Clin Immunol 159:154–162. https://doi.org/10.1016/j.clim.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, Gajer P, Ravel J, Goedert JJ (2012) Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 10:253. https://doi.org/10.1186/1479-5876-10-253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edogawa S, Peters SA, Jenkins GD, Gurunathan SV, Sundt WJ, Johnson S, Lennon RJ, Dyer RB, Camilleri M, Kashyap PC, Farrugia G, Chen J, Singh RJ, Grover M (2018) Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J 32:fj01800560R. https://doi.org/10.1096/fj.201800560R

    Article  Google Scholar 

  18. Lin PY, Sun L, Thibodeaux SR, Ludwig SM, Vadlamudi RK, Hurez VJ, Bahar R, Kious MJ, Livi CB, Wall SR, Chen L, Zhang B, Shin T, Curiel TJ (2010) B7–H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol 185:2747–2753. https://doi.org/10.4049/jimmunol.1000496

    Article  CAS  PubMed  Google Scholar 

  19. Kumar RS, Goyal N (2021) Estrogens as regulator of hematopoietic stem cell, immune cells and bone biology. Life Sci 269:119091. https://doi.org/10.1016/j.lfs.2021.119091

    Article  CAS  PubMed  Google Scholar 

  20. Clocchiatti A, Cora E, Zhang Y, Dotto GP (2016) Sexual dimorphism in cancer. Nat Rev Cancer 16:330–339. https://doi.org/10.1038/nrc.2016.30

    Article  CAS  PubMed  Google Scholar 

  21. Zhang MA, Rego D, Moshkova M, Kebir H, Chruscinski A, Nguyen H, Akkermann R, Stanczyk FZ, Prat A, Steinman L, Dunn SE (2012) Peroxisome proliferator-activated receptor (PPAR)alpha and -gamma regulate IFNgamma and IL-17A production by human T cells in a sex-specific way. Proc Natl Acad Sci U S A 109:9505–9510. https://doi.org/10.1073/pnas.1118458109

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y (2017) Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine 89:34–44. https://doi.org/10.1016/j.cyto.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  23. Kwon H, Schafer JM, Song NJ, Kaneko S, Li A, Xiao T, Ma A, Allen C, Das K, Zhou L, Riesenberg B, Chang Y, Weltge P, Velegraki M, Oh DY, Fong L, Ma Q, Sundi D, Chung D, Li X, Li Z (2022) Androgen conspires with the CD8(+) T cell exhaustion program and contributes to sex bias in cancer. Sci Immunol 7:eabq2630. https://doi.org/10.1126/sciimmunol.abq2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marks P, Soave A, Shariat SF, Fajkovic H, Fisch M, Rink M (2016) Female with bladder cancer: what and why is there a difference? Transl Androl Urol 5:668–682. https://doi.org/10.21037/tau.2016.03.22

    Article  PubMed  PubMed Central  Google Scholar 

  25. Altinoz MA, Ozpinar A, Elmaci I (2019) Reproductive epidemiology of glial tumors may reveal novel treatments: high-dose progestins or progesterone antagonists as endocrino-immune modifiers against glioma. Neurosurg Rev 42:351–369. https://doi.org/10.1007/s10143-018-0953-1

    Article  PubMed  Google Scholar 

  26. Wilkins HR, Doucet K, Duke V, Morra A, Johnson N (2010) Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2. Tumour Biol 31:16–22. https://doi.org/10.1007/s13277-009-0003-2

    Article  CAS  PubMed  Google Scholar 

  27. Fortunato RS, Ferreira AC, Hecht F, Dupuy C, Carvalho DP (2014) Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress? J Endocrinol 221:R31-40. https://doi.org/10.1530/JOE-13-0588

    Article  CAS  PubMed  Google Scholar 

  28. Hima S, Sreeja S (2016) Modulatory role of 17beta-estradiol in the tumor microenvironment of thyroid cancer. IUBMB Life 68:85–96. https://doi.org/10.1002/iub.1462

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Q, Li T, Qi J, Liu J, Qin C (2014) The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS One 9:e109782. https://doi.org/10.1371/journal.pone.0109782

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y (2021) Sex disparities matter in cancer development and therapy. Nat Rev Cancer 21:393–407. https://doi.org/10.1038/s41568-021-00348-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, Sullivan TJ, Hess JM, Gimelbrant AA, Beroukhim R, Lawrence MS, Getz G, Lane AA (2017) Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet 49:10–16. https://doi.org/10.1038/ng.3726

    Article  CAS  PubMed  Google Scholar 

  32. Walport LJ, Hopkinson RJ, Vollmar M, Madden SK, Gileadi C, Oppermann U, Schofield CJ, Johansson C (2014) Human UTY(KDM6C) is a male-specific Nϵ-methyl lysyl demethylase. J Biol Chem 289:18302–18313. https://doi.org/10.1074/jbc.M114.555052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA, Jaenisch R (2012) X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci U S A 109:13004–13009. https://doi.org/10.1073/pnas.1210787109

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Vallianatos CN, Farrehi C, Friez MJ, Burmeister M, Keegan CE, Iwase S (2018) Altered gene-regulatory function of KDM5C by a novel mutation associated with autism and intellectual disability. Front Mol Neurosci 11:104. https://doi.org/10.3389/fnmol.2018.00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaneko S, Li X (2018) X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci Adv 4:eaar5598. https://doi.org/10.1126/sciadv.aar5598

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Li X, Zhang Y, Zheng L, Liu M, Chen CD, Jiang H (2018) UTX is an escape from X-inactivation tumor-suppressor in B cell lymphoma. Nat Commun 9:2720. https://doi.org/10.1038/s41467-018-05084-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, Rondou P, Rosen M, Pieters T, Vandenberghe P, Delabesse E, Lammens T, De Moerloose B, Menten B, Van Roy N, Verhasselt B, Poppe B, Benoit Y, Taghon T, Melnick AM, Speleman F, Wendel HG, Van Vlierberghe P (2015) The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 125:13–21. https://doi.org/10.1182/blood-2014-05-577270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen X, Hu K, Cheng G, Xu L, Chen Z, Du P, Zhuang Z (2019) KDM5D inhibit epithelial-mesenchymal transition of gastric cancer through demethylation in the promoter of Cul4A in male. J Cell Biochem 120:12247–12258. https://doi.org/10.1002/jcb.27308

    Article  CAS  PubMed  Google Scholar 

  39. Haupt S, Caramia F, Herschtal A, Soussi T, Lozano G, Chen H, Liang H, Speed TP, Haupt Y (2019) Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun 10:5385. https://doi.org/10.1038/s41467-019-13266-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Gulve N, Su C, Deng Z, Soldan SS, Vladimirova O, Wickramasinghe J, Zheng H, Kossenkov AV, Lieberman PM (2022) DAXX-ATRX regulation of p53 chromatin binding and DNA damage response. Nat Commun 13:5033. https://doi.org/10.1038/s41467-022-32680-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, Dai H, Luo J, Mao B, Cao Y, Yu X, Jiang H, Zhao X (2018) HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics 8:3517–3529. https://doi.org/10.7150/thno.24401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Waraya M, Yamashita K, Ema A, Katada N, Kikuchi S, Watanabe M (2015) Exclusive association of p53 mutation with super-high methylation of tumor suppressor genes in the p53 pathway in a unique gastric cancer phenotype. PLoS One 10:e0139902. https://doi.org/10.1371/journal.pone.0139902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tomicic MT, Dawood M, Efferth T (2021) Epigenetic alterations upstream and downstream of p53 signaling in colorectal carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers13164072

    Article  PubMed  Google Scholar 

  44. Delbridge ARD, Kueh AJ, Ke F, Zamudio NM, El-Saafin F, Jansz N, Wang GY, Iminitoff M, Beck T, Haupt S, Hu Y, May RE, Whitehead L, Tai L, Chiang W, Herold MJ, Haupt Y, Smyth GK, Thomas T, Blewitt ME, Strasser A, Voss AK (2019) Loss of p53 causes stochastic aberrant X-chromosome inactivation and female-specific neural tube defects. Cell Rep 27:442-4545 e5. https://doi.org/10.1016/j.celrep.2019.03.048

    Article  CAS  PubMed  Google Scholar 

  45. Jenkins EC, Shah N, Gomez M, Casalena G, Zhao D, Kenny TC, Guariglia SR, Manfredi G, Germain D (2020) Proteasome mapping reveals sexual dimorphism in tissue-specific sensitivity to protein aggregations. EMBO Rep 21:e48978. https://doi.org/10.15252/embr.201948978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lefaki M, Papaevgeniou N, Chondrogianni N (2017) Redox regulation of proteasome function. Redox Biol 13:452–458. https://doi.org/10.1016/j.redox.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu DS, Duong CP, Haupt S, Montgomery KG, House CM, Azar WJ, Pearson HB, Fisher OM, Read M, Guerra GR, Haupt Y, Cullinane C, Wiman KG, Abrahmsen L, Phillips WA, Clemons NJ (2017) Inhibiting the system x(C)(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 8:14844. https://doi.org/10.1038/ncomms14844

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, Hu W, Feng Z (2013) Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 4:2935. https://doi.org/10.1038/ncomms3935

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Zhu Y, Shao X, Wang X, Liu L, Liang H (2019) Sex disparities in cancer. Cancer Lett 466:35–38. https://doi.org/10.1016/j.canlet.2019.08.017

    Article  CAS  PubMed  Google Scholar 

  50. Janku F, Kaseb AO, Tsimberidou AM, Wolff RA, Kurzrock R (2014) Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget 5:3012–22. https://doi.org/10.18632/oncotarget.1687

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim SE, Paik HY, Yoon H, Lee JE, Kim N, Sung MK (2015) Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol 21:5167–5175. https://doi.org/10.3748/wjg.v21.i17.5167

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brenner H, Haug U, Hundt S (2010) Sex differences in performance of fecal occult blood testing. Am J Gastroenterol 105:2457–2464. https://doi.org/10.1038/ajg.2010.301

    Article  PubMed  Google Scholar 

  53. Li H, Rong Z, Wang H, Zhang N, Pu C, Zhao Y, Zheng X, Lei C, Liu Y, Luo X, Chen J, Wang F, Wang A, Wang J (2020) Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol Sex Differ 11:46. https://doi.org/10.1186/s13293-020-00316-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nevzorova YA, Hu W, Cubero FJ, Haas U, Freimuth J, Tacke F, Trautwein C, Liedtke C (2013) Overexpression of c-myc in hepatocytes promotes activation of hepatic stellate cells and facilitates the onset of liver fibrosis. Biochim Biophys Acta 1832:1765–1775. https://doi.org/10.1016/j.bbadis.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  55. Yang Q, Yan C, Gong Z (2017) Activation of liver stromal cells is associated with male-biased liver tumor initiation in xmrk and Myc transgenic zebrafish. Sci Rep 7:10315. https://doi.org/10.1038/s41598-017-10529-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Care A, Bellenghi M, Matarrese P, Gabriele L, Salvioli S, Malorni W (2018) Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ 25:477–485. https://doi.org/10.1038/s41418-017-0051-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gong AY, Zhou R, Hu G, Li X, Splinter PL, O’Hara SP, LaRusso NF, Soukup GA, Dong H, Chen XM (2009) MicroRNA-513 regulates B7–H1 translation and is involved in IFN-gamma-induced B7–H1 expression in cholangiocytes. J Immunol 182:1325–1333. https://doi.org/10.4049/jimmunol.182.3.1325

    Article  CAS  PubMed  Google Scholar 

  58. Chen J, Jiang CC, Jin L, Zhang XD (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27:409–416. https://doi.org/10.1093/annonc/mdv615

    Article  CAS  PubMed  Google Scholar 

  59. Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T, Song W, Chen Y, OuYang J, Chen J, Kong F, Dong Y, Jiang SW, Li W, Wang P, Yuan Z, Wan X, Wang C, Li W, Zhang X, Chen K (2016) miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun 7:11406. https://doi.org/10.1038/ncomms11406

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Zhou LJ, Jiang FF, Chen XJ, Liu ZF, Ouyang Y, Zhao W, Yu DS (2016) Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 12:4419–4426. https://doi.org/10.3892/ol.2016.5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Michigan Lupus C, Strickland F, Richardson B (2013) Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 41:60–71. https://doi.org/10.1016/j.jaut.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li CL, Yeh KH, Liu WH, Chen CL, Chen DS, Chen PJ, Yeh SH (2015) Elevated p53 promotes the processing of miR-18a to decrease estrogen receptor-alpha in female hepatocellular carcinoma. Int J Cancer 136:761–770. https://doi.org/10.1002/ijc.29052

    Article  CAS  PubMed  Google Scholar 

  63. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, Iorio MV, Li M, Volinia S, Alder H, Nakamura T, Nuovo G, Liu Y, Nephew KP, Croce CM (2010) MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102:706–721. https://doi.org/10.1093/jnci/djq102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu F, Yuan JH, Huang JF, Yang F, Wang TT, Ma JZ, Zhang L, Zhou CC, Wang F, Yu J, Zhou WP, Sun SH (2016) Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. Oncogene 35:5422–5434. https://doi.org/10.1038/onc.2016.80

    Article  CAS  PubMed  Google Scholar 

  65. Jin M, Ren J, Luo M, You Z, Fang Y, Han Y, Li G, Liu H (2020) Long non-coding RNA JPX correlates with poor prognosis and tumor progression in non-small-cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis 41:634–645. https://doi.org/10.1093/carcin/bgz125

    Article  CAS  PubMed  Google Scholar 

  66. Yuan Y, Liu LX, Chen H, Wang YM, Xu YX, Mao HZ, Li J, Mills GB, Shu YQ, Li L, Liang H (2016) Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell 29:711–722. https://doi.org/10.1016/j.ccell.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feinberg AP, Koldobskiy MA, Gondor A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17:284–299. https://doi.org/10.1038/nrg.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, Reik W (2017) Gender differences in global but not targeted demethylation in iPSC reprogramming. Cell Rep 18:1079–1089. https://doi.org/10.1016/j.celrep.2017.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matsuda KI, Mori H, Nugent BM, Pfaff DW, McCarthy MM, Kawata M (2011) Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology 152:2760–2767. https://doi.org/10.1210/en.2011-0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bramble MS, Roach L, Lipson A, Vashist N, Eskin A, Ngun T, Gosschalk JE, Klein S, Barseghyan H, Arboleda VA, Vilain E (2016) Sex-specific effects of testosterone on the sexually dimorphic transcriptome and epigenome of embryonic neural stem/progenitor cells. Sci Rep 6:36916. https://doi.org/10.1038/srep36916

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Ratnu VS, Emami MR, Bredy TW (2017) Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res 95:301–310. https://doi.org/10.1002/jnr.23886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Courcy L, Bezak E, Marcu LG (2020) Gender-dependent radiotherapy: The next step in personalised medicine? Crit Rev Oncol Hematol 147:102881. https://doi.org/10.1016/j.critrevonc.2020.102881

    Article  PubMed  Google Scholar 

  73. Chmielewski-Stivers N, Petit B, Ollivier J, Monceau V, Tsoutsou P, Quintela Pousa A, Lin X, Limoli C, Vozenin MC (2021) Sex-specific differences in toxicity following systemic paclitaxel treatment and localized cardiac radiotherapy. Cancers (Basel). https://doi.org/10.3390/cancers13163973

    Article  PubMed  Google Scholar 

  74. Davidson M, Wagner AD, Kouvelakis K, Nanji H, Starling N, Chau I, Watkins D, Rao S, Peckitt C, Cunningham D (2019) Influence of sex on chemotherapy efficacy and toxicity in oesophagogastric cancer: a pooled analysis of four randomised trials. Eur J Cancer 121:40–47. https://doi.org/10.1016/j.ejca.2019.08.010

    Article  CAS  PubMed  Google Scholar 

  75. Yang W, Warrington NM, Taylor SJ, Whitmire P, Carrasco E, Singleton KW, Wu N, Lathia JD, Berens ME, Kim AH, Barnholtz-Sloan JS, Swanson KR, Luo J, Rubin JB (2019) Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aao5253

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huang Y, Cho HJ, Stranger BE, Huang RS (2022) Sex dimorphism in response to targeted therapy and immunotherapy in non-small cell lung cancer patients: a narrative review. Transl Lung Cancer Res 11:920–934. https://doi.org/10.21037/tlcr-21-1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Milano G, Etienne MC, Pierrefite V, Barberi-Heyob M, Deporte-Fety R, Renee N (1999) Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br J Cancer 79:627–630. https://doi.org/10.1038/sj.bjc.6690098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065. https://doi.org/10.2165/00003088-200544100-00004

    Article  PubMed  Google Scholar 

  79. Nguyen GK, Mellnick VM, Yim AK, Salter A, Ippolito JE (2018) Synergy of sex differences in visceral fat measured with CT and tumor metabolism helps predict overall survival in patients with renal cell carcinoma. Radiology 287:884–892. https://doi.org/10.1148/radiol.2018171504

    Article  PubMed  Google Scholar 

  80. Bayik D, Zhou Y, Park C, Hong C, Vail D, Silver DJ, Lauko A, Roversi G, Watson DC, Lo A, Alban TJ, McGraw M, Sorensen M, Grabowski MM, Otvos B, Vogelbaum MA, Horbinski C, Kristensen BW, Khalil AM, Hwang TH, Ahluwalia MS, Cheng F, Lathia JD (2020) Myeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific manner. Cancer Discov 10:1210–1225. https://doi.org/10.1158/2159-8290.CD-19-1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Okyar A, Kumar SA, Filipski E, Piccolo E, Ozturk N, Xandri-Monje H, Pala Z, Abraham K, Gomes A, Orman MN, Li XM, Dallmann R, Levi F, Ballesta A (2019) Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity - implications for mechanistic pharmacokinetics modeling. Sci Rep 9:10505. https://doi.org/10.1038/s41598-019-46977-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Gurgen D, Kusch A, Klewitz R, Hoff U, Catar R, Hegner B, Kintscher U, Luft FC, Dragun D (2013) Sex-specific mTOR signaling determines sexual dimorphism in myocardial adaptation in normotensive DOCA-salt model. Hypertension 61:730–736. https://doi.org/10.1161/HYPERTENSIONAHA.111.00276

    Article  CAS  PubMed  Google Scholar 

  83. Stacpoole PW (2017) Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx071

    Article  PubMed  Google Scholar 

  84. Tsuji T, Ozasa H, Aoki W, Aburaya S, Yamamoto Funazo T, Furugaki K, Yoshimura Y, Yamazoe M, Ajimizu H, Yasuda Y, Nomizo T, Yoshida H, Sakamori Y, Wake H, Ueda M, Kim YH, Hirai T (2020) YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation. Nat Commun 11:74. https://doi.org/10.1038/s41467-019-13771-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Manieri E, Herrera-Melle L, Mora A, Tomas-Loba A, Leiva-Vega L, Fernandez DI, Rodriguez E, Moran L, Hernandez-Cosido L, Torres JL, Seoane LM, Cubero FJ, Marcos M, Sabio G (2019) Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med 216:1108–1119. https://doi.org/10.1084/jem.20181288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baars A, Oosting A, Lohuis M, Koehorst M, El Aidy S, Hugenholtz F, Smidt H, Mischke M, Boekschoten MV, Verkade HJ, Garssen J, van der Beek EM, Knol J, de Vos P, van Bergenhenegouwen J, Fransen F (2018) Sex differences in lipid metabolism are affected by presence of the gut microbiota. Sci Rep 8:13426. https://doi.org/10.1038/s41598-018-31695-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, Dey S, Koh LK, Lim JQ, Lim WK, Myint SS, Loh JL, Ong P, Sam XX, Huang D, Lim T, Tan PH, Nagarajan S, Cheng CW, Ho H, Ng LG, Yuen J, Lin PH, Chuang CK, Chang YH, Weng WH, Rozen SG, Tan P, Creasy CL, Pang ST, McCabe MT, Poon SL, Teh BT (2017) Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aai8312

    Article  PubMed  Google Scholar 

  88. Ezponda T, Dupere-Richer D, Will CM, Small EC, Varghese N, Patel T, Nabet B, Popovic R, Oyer J, Bulic M, Zheng Y, Huang X, Shah MY, Maji S, Riva A, Occhionorelli M, Tonon G, Kelleher N, Keats J, Licht JD (2017) UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition. Cell Rep 21:628–640. https://doi.org/10.1016/j.celrep.2017.09.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A (2018) Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33:512-526 e8. https://doi.org/10.1016/j.ccell.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Laskowski AI, Fanslow DA, Smith ED, Kosak ST (2018) Clinical epigenetic therapies disrupt sex chromosome dosage compensation in human female cells. Gend Genome 2:2–7. https://doi.org/10.1177/2470289718787106

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y (2022) Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Mol Med 28:109. https://doi.org/10.1186/s10020-022-00537-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ma J, Yao Y, Tian Y, Chen K, Liu B (2022) Advances in sex disparities for cancer immunotherapy: unveiling the dilemma of Yin and Yang. Biol Sex Differ 13:58. https://doi.org/10.1186/s13293-022-00469-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Conforti F, Pala L, Bagnardi V, Viale G, De Pas T, Pagan E, Pennacchioli E, Cocorocchio E, Ferrucci PF, De Marinis F, Gelber RD, Goldhirsch A (2019) Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. J Natl Cancer Inst 111:772–781. https://doi.org/10.1093/jnci/djz094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Conforti F, Pala L, Pagan E, Bagnardi V, De Pas T, Queirolo P, Pennacchioli E, Catania C, Cocorocchio E, Ferrucci PF, Saponara M, Orsolini G, Zagami P, Nicolo E, De Marinis F, Tortora G, Bria E, Minucci S, Joffe H, Veronesi P, Wargo J, Rosenthal R, Swanton C, Mantovani A, Gelber RD, Viale G, Goldhirsch A, Giaccone G (2021) Sex-based dimorphism of anticancer immune response and molecular mechanisms of immune evasion. Clin Cancer Res 27:4311–4324. https://doi.org/10.1158/1078-0432.CCR-21-0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, Sentani K, Sera Y, Hayashi T, Koizumi M, Miyakawa Y, Inaba T, Sotomaru Y, Kaminuma O, Ichinohe T, Honda ZI, Yasui W, Horie S, Black PC, Matsubara A, Honda H (2020) Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clin Cancer Res 26:2065–2079. https://doi.org/10.1158/1078-0432.CCR-19-2230

    Article  CAS  PubMed  Google Scholar 

  96. Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, Gao A, Huang L, Hsueh EC, Ford DA, Hoft DF, Peng G (2019) TLR8-mediated metabolic control of human treg function: a mechanistic target for cancer immunotherapy. Cell Metab 29:103–1235. https://doi.org/10.1016/j.cmet.2018.09.020

    Article  CAS  PubMed  Google Scholar 

  97. Cristina V, Mahachie J, Mauer M, Buclin T, Van Cutsem E, Roth A, Wagner AD (2018) Association of patient sex with chemotherapy-related toxic effects: a retrospective analysis of the PETACC-3 trial conducted by the EORTC gastrointestinal group. JAMA Oncol 4:1003–1006. https://doi.org/10.1001/jamaoncol.2018.1080

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ye Y, Jing Y, Li L, Mills GB, Diao L, Liu H, Han L (2020) Sex-associated molecular differences for cancer immunotherapy. Nat Commun 11:1779. https://doi.org/10.1038/s41467-020-15679-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This study was funded by Health Science and Technology Capacity improvement Project of Jilin Province (2022JC069) and Natural Science Foundation of Jilin Province (YDZJ202301ZYTS047, YDZJ202201ZYTS281, YDZJ202301ZYTS080).

Author information

Authors and Affiliations

Authors

Contributions

MC conceptualized the review paper. HL structured the review. SL designed the Figures. HL & WJ contributed major amounts to manuscript writing. SC & MY & YP surveyed the literature. All authors were major contributors to revision, editing and proof-reading the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mengying Cui.

Ethics declarations

Conflict of interest

The authors declare that there are not conflicts of interest.

Ethical approval

Not Applicable.

Informed consent

Not Applicable.

Consent to publish

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, W., Liu, S. et al. Connecting the mechanisms of tumor sex differences with cancer therapy. Mol Cell Biochem 479, 213–231 (2024). https://doi.org/10.1007/s11010-023-04723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04723-1

Keywords

Navigation