Skip to main content
Log in

Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: a comet assay assessment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Global estimates exhibit that one million people have end-stage renal disease, a disease-state characterized by irreversible loss of kidney structure and function, thus necessitating renal replacement therapy. The disease-state, oxidative stress, inflammatory responses, as well as the treatment procedure can have damaging effects on the genetic material. Therefore, the present study was carried out to investigate DNA damage (basal and oxidative) using the comet assay in peripheral blood leukocytes of patients (n = 200) with stage V Chronic Kidney Disease (on dialysis and those recommended but yet to initiate dialysis) and compare it to that in controls (n = 210). Basal DNA damage was significantly elevated (1.13x, p ≤ 0.001) in patients (46.23 ± 0.58% DNA in tail) compared to controls (40.85 ± 0.61% DNA in tail). Oxidative DNA damage was also significantly (p ≤ 0.001) higher in patients (9.18 ± 0.49 vs. 2.59 ± 0.19% tail DNA) compared to controls. Twice-a-week dialysis regimen patients had significantly elevated % tail DNA and Damage Index compared to the non-dialyzed and to the once-a-week dialysis group implying dialysis- induced mechanical stress and blood–dialyzer membrane interactions as probable contributors to elevated DNA damage. The present study with a statistically significant power implies higher disease-associated as well as maintenance therapy (hemodialysis)-induced basal and oxidatively damaged DNA, which if not repaired has the potential to initiate carcinogenesis. These findings mark the need for improvement and development of interventional therapies for delaying disease progression and associated co-morbidities so as to improve life expectancy of patients with kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Huber TB, Simons M, Hartleben B, Sernetz L, Schmidts M, Gundlach E, Saleem MA, Walz G, Benzing T (2003) Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 12:3397–3405

    Article  CAS  PubMed  Google Scholar 

  2. Fogo AB (2007) Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 22:2011–2022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cachofeiro V, Goicochea M, deVinuesa SG, Oubiña P, Lahera V, Luño J (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int 111:S4–S9

    Article  CAS  Google Scholar 

  4. Sundaram SPM, Nagarajan S, Devi AJM (2014) Chronic kidney disease-effect of oxidative stress. Chin J Biol. https://doi.org/10.1155/2014/216210

    Article  Google Scholar 

  5. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW (2003) Kidney disease as a risk factor for development of cardiovascular disease a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108:2154–2169

    Article  PubMed  Google Scholar 

  6. Nusair MB, Rajpurohit N, Alpert MA (2012) Chronic inflammation and coronary atherosclerosis in patients with end-stage renal disease. Cardiorenal Med 2:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baigent C, Burbury K, Wheeler D (2000) Premature cardiovascular disease in chronic renal failure. Lancet 356:147–152

    Article  CAS  PubMed  Google Scholar 

  8. Goicoechea M, deVinuesa SG, Gomez-Campdera F, Luno J (2005) Predictive cardiovascular risk factors in patients with chronic kidney disease (CKD). Kidney Int. Suppl. 93:S35–S38

    Article  Google Scholar 

  9. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  10. Tsirpanlis G, Bagos P, Ioannou D (2004) Exploring inflammation in hemodialysis patients: persistent and superimposed inflammation. A longitudinal study. Kidney Blood Press Res 27:63–70

    Article  CAS  PubMed  Google Scholar 

  11. Teschner M, Garte C, Rückle-Lanz H, Mäder U, Stopper H, Klassen A, Heidland A (2002) Incidence and spectrum of malignant disease among dialysis patients in North Bavaria. Dtsch Med Wochenschr 127:2497–2502

    Article  CAS  PubMed  Google Scholar 

  12. Vajdic CM, McDonald SP, McCredie MR, VanLeeuwen MT, Stewart JH, Law M, Chapman JR, Webster AC, Kaldor JM, Grulich AE (2006) Cancer incidence before and after kidney transplantation. J Am Med Assoc 296:2823–2831

    Article  CAS  Google Scholar 

  13. Smith A. 2011. Causes of renal disease. Accessed on March 18, 2016.

  14. Roberts MA, Hare DL, Ratnaike S, Ierino FL (2006) Cardiovascular biomarkers in CKD: pathophysiology and implications for clinical management of cardiac disease. Am J Kidney Dis 48:341–360

    Article  CAS  PubMed  Google Scholar 

  15. Rangel-López A, Paniagua-Medina ME, Urbán-Reyes M, Cortes-Arredondo M, Alvarez-Aguilar C, López-Meza J, Ochoa-Zarzosa A, Lindholm B, García-López E, Paniagua JR (2013) Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study. Mutagenesis 28:219–225

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schupp N, Stopper H, Rutkowski P, Kobras K, Nebel M, Bahner U, Vienken J, Heidland A (2006) Effect of different hemodialysis regimens on genomic damage in end-stage renal failure. Semin Nephrol 26:28–32

    Article  CAS  PubMed  Google Scholar 

  17. Schupp N, Stopper H, Heidland A (2016) DNA damage in chronic kidney disease: evaluation of clinical biomarkers. Oxid Med Cell Longev 2016:3592042

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380

    Article  CAS  PubMed  Google Scholar 

  19. Abbas T, Keaton MA, Dutta A (2015) Genomic instability in cancer. Cold Spring Harbor Persp Biol 5:1–19

    Google Scholar 

  20. Schumacher B, Garinis GA, Hoeijmakers JHJ (2008) Age to survive: DNA damage and aging. Trends Genet 24:77–85

    Article  CAS  PubMed  Google Scholar 

  21. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr NeuroPharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. GBD (The Global Burden of Diseases, Injuries, and Risk Factors Study) Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395:709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  23. Cooke MS, Loft S, Olinski R, Evans MD, Bialkowski K, Wagner JR, Dedon PC, Møller P, Greenberg MM, Cadet J (2010) Recommendations for standardized description of and nomenclature concerning oxidatively damaged nucleobases in DNA. Chem Res Toxicol 23:705–707. https://doi.org/10.1021/tx1000706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS (2021) Biomarkers of nucleic acid oxidation—a summary state-of-the-art. Redox Biol 42:101872. https://doi.org/10.1016/j.redox.2021.101872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collins AR (2009) Investigating oxidative DNA damage and its repair using the comet assay. Mutat Res 681:24–32

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Møller P, Stopper H, Collins AR (2020) Measurement of DNA damage with the comet assay in high-prevalence diseases: current status and future directions. Mutagenesis 35:5–18. https://doi.org/10.1093/mutage/gez018

    Article  CAS  PubMed  Google Scholar 

  27. Gandhi G, Mehta T, Contractor P, Tung G (2018) Prognostic markers of genomic instability in end stage renal disease. Mutat Res, Genet Toxicol Environ Mutagen 835:1–10

    Article  CAS  PubMed  Google Scholar 

  28. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  29. Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker D, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res 463:11–72

    Article  Google Scholar 

  30. Misra A, Chowbey P, Makkar BM, Vikram NK, Wasir JS, Chadha D, Joshi SR, Sadikot S, Gupta R, Gulati S, Munjal YP (2009) Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J Assoc Physicians India 57:163–169

    CAS  PubMed  Google Scholar 

  31. IGH. Definition and Classification (2013). Special issue on Indian guidelines on hypertension. JAPI (I.G.H.)-III 2013; 61: 12.

  32. Møller P, Azqueta A, Boutet-Robinet E, Koppen G, Bonassi S, Milić M, Gajski G, Costa S, Teixeira JP, CostaPereira C, Dusinska M, Godschalk R, Brunborg G, Gutzkow KB, Giovannelli L, Cooke MS, Richling E, Laffon B, Valdiglesias V, Basaran N, Langie S (2020) Minimum information for reporting on the comet assay (MIRCA): recommendations for describing comet assay procedures and results. Nat Protoc 15:3817–3826. https://doi.org/10.1038/s41596-020-0398-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahuja YR, Saran R (1999) Alkaline single cell gel electrophoresis assay. Protoc J Cytol Genet 34:57–62

    Google Scholar 

  34. Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis 18:45–51

    Article  CAS  PubMed  Google Scholar 

  35. Collins A, Ai-guo M, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336:69–77

    Article  CAS  PubMed  Google Scholar 

  36. Garcia O, Romero I, González JE, Mandina T (2007) Measurements of DNA damage on silver stained comets using free Internet software. Mutat Res 5:186–190

    Article  Google Scholar 

  37. National Kidney Foundation (2015) KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 66(5):884–930

    Article  Google Scholar 

  38. Collins A, Dušinská M, Gedik C, Štětina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104:465–469. https://doi.org/10.2307/3432805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Floyd RA (1997) Protective action of nitrone-based free radical traps against oxidative damage to the central nervous system. Adv Pharmacol 38:361–378

    Article  CAS  PubMed  Google Scholar 

  40. Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387:147–163

    Article  CAS  PubMed  Google Scholar 

  41. Freidovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13–18

    Article  ADS  Google Scholar 

  42. Ames BN (1983) Dietary carcinogens and anticarcinogens. Oxygen Radic Degener Dis Sci 221:1256–1264

    CAS  Google Scholar 

  43. Pryor WA (1987) The free-radical theory of aging revisited: A critique and a suggested disease-specific theory. In: Warner HR, Butler RN, Sprott RL, Schneider EL (eds) Modern biological theories of aging. Raven Press, New York, pp 89–112

    Google Scholar 

  44. Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23:191–205

    Article  CAS  PubMed  Google Scholar 

  45. Lee E, Oh E, Lee J, Sul D, Lee J (2004) Use of the tail moment of the lymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci 81:121–132

    Article  CAS  PubMed  Google Scholar 

  46. Kumaravel TS, Jha AN (2006) Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 605:7–16

    Article  CAS  PubMed  Google Scholar 

  47. Cotelle S, Férard JF (1999) Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34:246–255

    Article  CAS  PubMed  Google Scholar 

  48. Collins AR, Oscoz AA, Brunborg G, Giovannelli LG, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151

    Article  CAS  PubMed  Google Scholar 

  49. Muruzabal D, Sanz-Serrano J, Sauvaigo S, Gützkow KB, deCerain AL, Vettorazzi A, Azqueta A (2020) Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol Lett 330:108–117

    Article  CAS  PubMed  Google Scholar 

  50. Muruzabal D, Collins A, Azqueta A (2021) The enzyme-modified comet assay: past, present and future. Food Chem Toxicol 147:111865. https://doi.org/10.1016/j.fct.2020.111865

    Article  CAS  PubMed  Google Scholar 

  51. Stopper H, Boullay F, Heidland A, Vienken J, Bahner U (2001) Comet-assay analysis identifies genomic damage in lymphocytes of uremic patients. Am J Kidney Dis 38:296–301

    Article  CAS  PubMed  Google Scholar 

  52. Kan E, Undeğer U, Bali M, Başaran N (2002) Assessment of DNA strand breakage by the alkaline COMET assay in dialysis patients and the role of vitamin E supplementation. Mutat Res 520:151–159

    Article  CAS  PubMed  Google Scholar 

  53. Stoyanova E, Sandoval SB, Zúñiga LA, El-Yamani N, Coll E, Pastor S, Reyes J, Andrés E, Ballarin J, Xamena N, Marcos R (2010) Oxidative DNA damage in chronic renal failure patients. Nephrol Dial Transpl 25:879–885

    Article  CAS  Google Scholar 

  54. Moffitt T, Hariton F, Devlin M, Garrett PJ, Hannon-Fletcher MPA (2014) Oxidative DNA damage is elevated in renal patients undergoing haemodialysis. Open J Prev Med 4:421–428

    Article  Google Scholar 

  55. Kobras K, Schupp N, Nehrlich K, Adelhardt M, Bahner U, Vienken J, Heidland A, Sebekova K, Stopper H (2006) Relation between different treatment modalities and genomic damage of end-stage renal failure patients. Kidney Blood Press Res 29:10–17

    Article  CAS  PubMed  Google Scholar 

  56. Park J, Ahmadi SF, Streja E, Molnar MZ, Flegal KM, Gillen D, Kovesdy CP, Kalantar-Zadeh K (2014) Obesity paradox in end-stage kidney disease patients. Prog Cardiovasc Dis 56:415–425

    Article  PubMed  Google Scholar 

  57. Flegal KM, Graubard BI, Williamson DF, Gail MH (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. J Am Med Assoc 298:2028–2037

    Article  CAS  Google Scholar 

  58. Huang J, Lin HY, Lim L, Chen S, Chang J, Hwang S, Tsai J, Hung C, Chen H (2015) Body mass index, mortality, and gender difference in advanced chronic kidney disease. PLoS ONE 10:e0126668

    Article  PubMed  PubMed Central  Google Scholar 

  59. Navaneethan SD, Schold JD, Arrigain S, Kirwan JP, Nally JV (2016) Body mass index and causes of death in chronic kidney disease. Kidney Int 89:675–682

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mohsen A, Brown R, Hoefield R, Kalra PA, O’Donoghue D, Middleton R, New D (2012) Body mass index has no effect on rate of progression of chronic kidney disease in subjects with type 2 diabetes mellitus. J Nephrol 25:384–393

    Article  PubMed  Google Scholar 

  61. Kristic S, Zubovic SV, Zukic F (2013) The relationship of chronic renal failure and body mass index in patients without diabetes. Med Arch 67:406–406

    Article  Google Scholar 

  62. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  63. Stopper H, Meysen T, Böckenförde A, Bahner U, Heidland A, Vamvakas S (1999) Increased genomic damage in lymphocytes of patients before and after long-term maintenance hemodialysis therapy. Am J Kidney Dis 34:433–437

    Article  CAS  PubMed  Google Scholar 

  64. Gandhi G, Tung G (2017) Sensitivity and specificity prediction of the buccal micronucleus cytome assay in end-stage renal disease patients on dialysis: a case-control study. Mutat Res 822:1–9

    Article  CAS  Google Scholar 

  65. Malachi T, Zevin D, Gafter U, Chagnac A, Slor H, Levi J (1993) DNA repair and recovery of RNA synthesis in uremic patients. Kidney Int 44:385–389

    Article  CAS  PubMed  Google Scholar 

  66. Boxall MC, Goodship TH, Brown AL, Ward MC, vonZglinicki T (2006) Telomere shortening and haemodialysis. Blood Purif 24:185–189

    Article  PubMed  Google Scholar 

  67. Oberoi SS (2015) Updating income ranges for Kuppuswamy’s socio-economic status scale for the year 2014. Indian J Public Health 59:156–157

    Article  PubMed  Google Scholar 

  68. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by UGC research project grant sanctioned to GG and GKT is thankful for the UGC-project fellowship and the UPE fellowship from GNDU. The authors are thankful to the doctors and study participants for their cooperation.

Funding

Research funding under University Grants Commission, New Delhi, India sanctioned to Gursatej Gandhi is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

GG contributed to the study conception and design. Material preparation, data collection and analysis were performed by GKT. The first draft of the manuscript was written by GKT and both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Gurleen Kaur Tung.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 165 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, G.K., Gandhi, G. Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: a comet assay assessment. Mol Cell Biochem 479, 199–211 (2024). https://doi.org/10.1007/s11010-023-04720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04720-4

Keywords

Navigation