Skip to main content

Advertisement

Log in

Impact of spatial metabolomics on immune-microenvironment in oral cancer prognosis: a clinical report

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MALDI imaging for metabolites and immunohistochemistry for 38 immune markers was used to characterize the spatial biology of 2 primary oral tumours, one from a patient with an early recurrence (Tumour R), and the other from a patient with no recurrence 2 years after treatment completion (Tumour NR). Tumour R had an increased purine nucleotide metabolism in different regions of tumour and adenosine-mediated suppression of immune cells compared to Tumour NR. The differentially expressed markers in the different spatial locations in tumour R were CD33, CD163, TGF-β, COX2, PD-L1, CD8 and CD20. These results suggest that altered tumour metabolomics concomitant with a modified immune microenvironment could be a potential marker of recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data has been provided in the manuscript. However if additional information is required will be shared on reasonable request to the corresponding author.

References

  1. Hu Y, Zhong R, Li H, Zou Y (2020) Effects of betel quid, smoking and alcohol on oral cancer risk: a case-control study in Hunan Province, China. Subst Use Misuse 55:1501–1508. https://doi.org/10.1080/10826084.2020.1750031

    Article  PubMed  Google Scholar 

  2. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  3. Martínez-Reyes I, Chandel NS (2021) Cancer metabolism: looking forward. Nat Rev Cancer 21:669–680. https://doi.org/10.1038/s41568-021-00378-6

    Article  CAS  PubMed  Google Scholar 

  4. Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79:4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Annaratone L, Cascardi E, Vissio E et al (2020) The multifaceted nature of tumor microenvironment in breast carcinomas. Pathobiology 87:125–142. https://doi.org/10.1159/000507055

    Article  CAS  PubMed  Google Scholar 

  6. Sistigu A, Musella M, Galassi C, Vitale I, De Maria R (2020) Tuning cancer fate: tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Front Immunol 11:2166. https://doi.org/10.3389/fimmu.2020.02166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leone RD, Powell JD (2020) Metabolism of immune cells in cancer. Nat Rev Cancer 20:516–531. https://doi.org/10.1038/s41568-020-0273-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bayik D, Lathia JD (2021) Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer 21:526–536. https://doi.org/10.1038/s41568-021-00366-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q (2021) Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 73:103627. https://doi.org/10.1016/j.ebiom.2021.103627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Puccetti P, Fallarino F (2022) T cell fat catabolism: a novel target for kynurenine? EBioMedicine 75:103779. https://doi.org/10.1016/j.ebiom.2021.103779

    Article  CAS  PubMed  Google Scholar 

  11. Mukherjee G, Bag S, Chakraborty P et al (2020) Density of CD3+ and CD8+ cells in gingivo-buccal oral squamous cell carcinoma is associated with lymph node metastases and survival. PLoS ONE 15:e0242058. https://doi.org/10.1371/journal.pone.0242058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol 24:235–251. https://doi.org/10.1097/PAP.0000000000000162

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24:311–335. https://doi.org/10.1097/PAP.0000000000000161

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deininger SO, Cornett DS, Paape R et al (2011) Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal Bioanal Chem 401:167–181. https://doi.org/10.1007/s00216-011-4929-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leone RD, Emens LA (2018) Targeting adenosine for cancer immunotherapy. J Immunother Cancer 6:57. https://doi.org/10.1186/s40425-018-0360-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Semenza GL (2021) Intratumoral hypoxia and mechanisms of immune evasion mediated by hypoxia-inducible factors. Physiology (Bethesda) 36:73–83. https://doi.org/10.1152/physiol.00034.2020

    Article  CAS  PubMed  Google Scholar 

  17. Chaudhary A, Bag S, Arora N et al (2020) Hypoxic transformation of immune cell metabolism within the microenvironment of oral cancers. Front Oral Health 1:585710. https://doi.org/10.3389/froh.2020.585710

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yadollahi P, Jeon YK, Ng WL et al (2021) Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity. BMB Rep 54:12–20. https://doi.org/10.5483/BMBRep.2021.54.1.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DiLillo DJ, Yanaba K, Tedder TF (2010) B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol 184:4006–4016. https://doi.org/10.4049/jimmunol.0903009

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen JS, Sahota RA, Milne K et al (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18:3281–3292. https://doi.org/10.1158/1078-0432.CCR-12-0234

    Article  CAS  PubMed  Google Scholar 

  21. Svensson MC, Warfvinge CF, Fristedt R et al (2017) The integrative clinical impact of tumor-infiltrating T lymphocytes and NK cells in relation to B lymphocyte and plasma cell density in esophageal and gastric adenocarcinoma. Oncotarget 8:72108–72126. https://doi.org/10.18632/oncotarget.19437

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pagès F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666. https://doi.org/10.1056/NEJMoa051424

    Article  PubMed  Google Scholar 

  23. Simonetti G, Mengucci C, Padella A et al (2021) Integrated genomic-metabolic classification of acute myeloid leukemia defines a subgroup with NPM1 and cohesin/DNA damage mutations. Leukemia 35:2813–2826. https://doi.org/10.1038/s41375-021-01318-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohradanova-Repic A, Machacek C, Charvet C et al (2018) Extracellular purine metabolism is the switchboard of immunosuppressive macrophages and a novel target to treat diseases with macrophage imbalances. Front Immunol 9:852. https://doi.org/10.3389/fimmu.2018.00852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu F, Wei Y, Tang Z et al (2020) Tumor-associated macrophages in lung cancer: friend or foe? (review). Mol Med Rep 22:4107–4115. https://doi.org/10.3892/mmr.2020.11518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexandrov T, Becker M, Deininger SO et al (2010) Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering. J Proteome Res 9:6535–6546. https://doi.org/10.1021/pr100734z

    Article  CAS  PubMed  Google Scholar 

  27. Chan MK, Chung JY, Tang PC et al (2022) TGF-β signaling networks in the tumor microenvironment. Cancer Lett 550:215925. https://doi.org/10.1016/j.canlet.2022.215925

    Article  CAS  PubMed  Google Scholar 

  28. Li S, Jiang M, Wang L et al (2020) Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed Pharmacother 129:110389. https://doi.org/10.1016/j.biopha.2020.110389

    Article  CAS  PubMed  Google Scholar 

  29. Coy S, Wang S, Stopka SA et al (2022) Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun 13:4814. https://doi.org/10.1038/s41467-022-32430-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M/S Bruker, Germany, for running the experiments of MALDI.

Funding

GM acknowledges the Department of Biotechnology, Government of India, New Delhi, for funding under the Systems Medicine Cluster (SyMeC, Project Reference: No./BT/Med-II/NIBMG/SyMeC/2014/Vol II).

Author information

Authors and Affiliations

Authors

Contributions

Research planning: GM, SB; Conduct and reporting: GM, JO, SB; Conception and design: GM; Acquisition and interpretation of data: JO, SB, AC, SS; Clinical study: GM, PA; Manuscript preparation: GM, SB, SS.

Corresponding author

Correspondence to Geetashree Mukherjee.

Ethics declarations

Competing interest

JO is employed at Bruker Daltonics GmbH Co. KG, a vendor for mass spectrometers. All other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bag, S., Oetjen, J., Shaikh, S. et al. Impact of spatial metabolomics on immune-microenvironment in oral cancer prognosis: a clinical report. Mol Cell Biochem 479, 41–49 (2024). https://doi.org/10.1007/s11010-023-04713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04713-3

Keywords

Navigation