Skip to main content
Log in

Cardiac remodeling associated with chronic kidney disease is enhanced in a rat model of metabolic syndrome: Preparation of mesenchymal transition

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac alteration due to chronic kidney disease is described by tissue fibrosis. This remodeling involves myofibroblasts of various origins, including epithelial or endothelial to mesenchymal transitions. In addition, obesity and insulin resistance together or separately seem to exacerbate cardiovascular risk in chronic kidney disease (CKD). The main objective of this study was to assess if pre-existing metabolic disease exacerbates CKD-induced cardiac alterations. In addition, we hypothesised that endothelial to mesenchymal transition participates in this enhancement of cardiac fibrosis. Rats fed cafeteria type diet for 6 months underwent a subtotal nephrectomy at 4 months. Cardiac fibrosis was evaluated by histology and qRT-PCR. Collagens and macrophages were quantified by immunohistochemistry. Endothelial to mesenchymal transitions were assessed by qRT-PCR (CD31, VE-cadherin, α-SMA, nestin) and also by CD31 immunofluorescence staining. Rats fed with cafeteria type regimen were obese, hypertensive and insulin resistant. Cardiac fibrosis was predominant in CKD rats and was highly majored by cafeteria regimen. Collagen-1 and nestin expressions were higher in CKD rats, independently of regimen. Interestingly, in rats with CKD and cafeteria diet we found an increase of CD31 and α-SMA co-staining with suggest an implication of endothelial to mesenchymal transition during heart fibrosis. We showed that rats already obese and insulin resistant had an enhanced cardiac alteration to a subsequent renal injury. Cardiac fibrosis process could be supported by a involvement of the endothelial to mesenchymal transition phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data will be available upon reasonable request by sending an email to: fabrice.raynaud1@umontpellier.fr

Abbreviations

CKD:

Chronic kidney disease

EndMT:

Endothelial to mesenchymal transition

References

  1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimensions and perspectives. Lancet 382:260–272

    Article  PubMed  Google Scholar 

  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  3. Stevens LA, Li S, Wang C, Huang C, Becker BN, Bomback AS, Brown WW, Ríos Burrows N, Jurkovitz CT, McFarlane SI, Norris K C, Shlipak M, Whaley-Connell AT, Chen SC, Bakris GL, McCullough PA. Prevalence of CKD and comorbid illness in elderly patients in the United States: results from the Kidney Early Evaluation Program (KEEP) American Journal of Kidney Diseases. 2010;55:S23–S33

  4. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  5. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16:31–38

    Article  CAS  PubMed  Google Scholar 

  6. Dorn GW (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodeling. Cardiovasc Res 81:465–473

    Article  CAS  PubMed  Google Scholar 

  7. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. López B, González A, Díez J (2010) Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation 121:1645–1654

    Article  PubMed  Google Scholar 

  9. Sun Y, Kiani MF, Postlethwaite AE, Weber KT (2002) Infarct scar as living tissue. Basic Res Cardiol 97:343–347

    Article  PubMed  Google Scholar 

  10. Hinz B (2007) Formation and Function of the myofibroblast during tissue repair. J Investig Dermatol 127:526–537

    Article  CAS  PubMed  Google Scholar 

  11. Piera-Velazquez S, Jimenez SA (2019) Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 99:1281–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jover B, Reynes C, Rugale C, Reboul C, Jeanson L, Tournier M, Lajoix AD, Desmetz C (2017) Sodium restriction modulates innate immunity and prevents cardiac remodeling in a rat model of metabolic syndrome. Biochim Biophys Acta 1863:1568–1574

    Article  CAS  Google Scholar 

  13. Leask A (2015) Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res 116:1269–1276

    Article  CAS  PubMed  Google Scholar 

  14. Parikh NI, Hwang SJ, Larson MG, Meigs JB, Levy D, Fox CS (2006) Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch Intern Med 166:1884–1891

    Article  PubMed  Google Scholar 

  15. Kannel WB, MCGee DL. Diabetes and Glucose Tolerance as Risk Factors for cardiovascular Disease: The Framingham Study. Diabetes Care 1979,2:120–126.

  16. Kurniawan AL, Hsu CY, Rau HH, Lin LY, Chao JC (2019) Association of kidney function-related dietary pattern, weight status, and cardiovascular risk factors with severity of impaired kidney function in middle-aged and older adults with chronic kidney disease: a cross-sectional population study. Nutr J 18:27

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muga MA, Owili PO, Hsu CY, Rau HH, Chao JC-J (2016) Association between dietary patterns and cardiovascular risk factors among middle-aged and elderly adults in Taiwan: a population-based study from 2003 to 2012. PLoS ONE 11:e0157745

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paterson EN, Neville CE, Silvestri G, Montgomery S, Moore E, Silvestri V, Cardwell CR, MacGillivray TJ, Maxwell AP, Woodside JV, McKay GJ (2018) Dietary patterns chronic kidney disease: a cross sectional association in the Irish Nun eye study. Sci Rep 8:6654

    Article  PubMed  PubMed Central  Google Scholar 

  19. Spoto B, Pisano A, Zoccali C (2016) Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 311:1087–1108

    Article  Google Scholar 

  20. Kaesler N, Babler A, Floege J, Kramann R (2020) Cardiac Remodeling in Chronic Kidney Disease. Toxins 12:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cordaillat M, Rugale C, Casellas D, Mimran A, Jover B (2005) Cardiorenal abnormalities associated with high sodium intake: correction by spironolactone in rats. Am J Physiol Regul Integr Comp Physiol 289:1137–1143

    Article  Google Scholar 

  22. Oudot C, Lajoix AD, Jover B, Rugale C (2013) Dietary sodium restriction prevents kidney damage in high fructose-fed rats. Kidney Int 83:674–683

    Article  CAS  PubMed  Google Scholar 

  23. Johnson AR, Wilkerson MD, Sampey BP, Troester MA, Hayes DN, Malowski L (2016) Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Com 473:545–550

    Article  CAS  PubMed  Google Scholar 

  24. Praga M, Hernandez E, Herrero JC, Morales E, Revilla Y, Diaz-Gonzalez R, Rodicio JL (2000) Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int 58:2111–2118

    Article  CAS  PubMed  Google Scholar 

  25. Ceylan-Isik AF, Kandadi MR, Xu X, Hua Y, Chicco AJ, Ren J, Nair S (2013) Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 63:4–13

    Article  CAS  PubMed  Google Scholar 

  26. Gonçalves N, Silva AF, Gonçalves Rodrigues P, Correia E, Moura C, Eloy C, Roncon-Albuquerque R Jr, Falcão-Pires I, Leite-Moreira AF (2016) Early cardiac changes induced by a hypercaloric Western-type diet in “subclinical” obesity. Am J Physiol Heart Circ Physiol 310:H655–H666

    Article  PubMed  Google Scholar 

  27. Mitsnefes MM, Betoko A, Schneider MF, Salusky IB, Wolf MS, Jüppner H, Warady BA, Furth SL, Portale AA (2018) FGF23 and Left Ventricular Hypertrophy in Children with CKD. Clin J Am Soc Nephrol 13(1):45–52

    Article  CAS  PubMed  Google Scholar 

  28. Lin YP, Yu WC, Hsu ME, Tsai HC, Liao CC, Lin CH (2015) Comparative proteomic analysis of rat left ventricle in a subtotal nephrectomy model. J Chin Med Assoc 78(4):218–228

    Article  PubMed  Google Scholar 

  29. Kakkar R, Lee RT (2008) The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov 7(10):827–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bayes-Genis A, de Antonio M, Galán A, Sanz H, Urrutia A, Cabanes R et al (2012) Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Fail janv 14(1):32–38

    Article  CAS  Google Scholar 

  31. Plawecki M, Morena M, Kuster N, Chenine L, Leray-Moragues H, Jover B, Fesler P, Lotierzo M, Dupuy AM, Klouche K, Cristol JP (2018) sST2 as a new biomarker of chronic kidney disease-induced cardiac remodelling: Impact on risk prediction. Mediators Inflamm 8(2018):3952526

    Google Scholar 

  32. Martinez-Martinez E, Miana M, Jurado-Lopez R, Rousseau E, Rossignol P, Zannad F, Victoria Cachofeiro V, Natalia López-Andrés N. A role for soluble ST2 in vascular remodeling associated with obesity in rats. PLoS ONE, 2013 Nov 12;8(11).

  33. Ochieng J, Furtak V, Lukyanov P (2002) Extracellular functions of galectin-3. Glycoconj J 19:527–535

    Article  CAS  PubMed  Google Scholar 

  34. Sharma UC, Pokharel S, Van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, André S, Crijns HJGM, Gabius HJ, Maessen J, Pinto YM (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128

    Article  CAS  PubMed  Google Scholar 

  35. Stahrenberg R, Edelmann F, Mende M, Kockskamper A, Dungen HD, Luers C, Binder L, Herrmann-Lingen C, Gelbrich G, Hasenfuss G, Pieske B, Wachter R (2010) The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail 12(12):1309–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiskirchen R, Meurer SK (2013) BMP-7 counteracting TGF-beta1 activities in organ fibrosis. Front Biosci 18:1407–1434

    Article  CAS  Google Scholar 

  37. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    Article  CAS  PubMed  Google Scholar 

  38. Van meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-b. Cell Tissue Res. 2012;347:177–186.

  39. Beguin PC, Gosselin H, Mamarbachi M, Calderone A (2011) Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol 227(2): 813–820

  40. Chabot A, Hertig V, Boscher E, Nguyen QT, Boivin B, Chebli J, Bissonnette L, Villeneuve L, Brochiero E, Dupuis J, Calderone A (2015) Endothelial and epithelial cell transition to a mesenchymal phenotype was delineated by nestin expression. J Cell Physiol 1601–1609

  41. Sakairi T, Hiromura K, Yamashita S, Takeuchi S, Tomioka M, Ideura H, Maeshima A, Kaneko Y, Kuroiwa T, Nangaku M, Takeuchi T, Nojima Y (2007) Nestin expression in the kidney with an obstructed ureter. KI 72:307–318

    CAS  Google Scholar 

  42. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM (2004) Nestin expression: A property of multi-lineage progenitor cells? Cell Mol Life Sci 61:2510–2522

    Article  CAS  PubMed  Google Scholar 

  43. Oikawa H, Hayashi K, Maesawa C, Masuda T, Sobue K (2010) Expression profiles of nestin in vascular smooth muscle cells in vivo and in vitro. Exp Cell Res 1993(106):1291–1300

    Google Scholar 

  44. Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106:1291–1300

    Article  CAS  PubMed  Google Scholar 

  45. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  46. Hertig V (2017) Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)-cells. PLos One 12(4):e0176147

  47. Sappino AP, Schurch W, Gabbiani G (1990) Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63:144–161

    CAS  PubMed  Google Scholar 

  48. Bujak M, Frangogiannis NG (2006) The role of TGF-b signaling in myocardial infarction and cardiac remodeling. Cardiovas Res 74:184–195

    Article  Google Scholar 

  49. Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 295:E1269-1276

    Article  CAS  PubMed  Google Scholar 

  50. Mizushige K, Yao L, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JB, RF, wrote the main manuscript text MP, NG, AC, LJ, RF performed experiments All authors reviewed the manuscript.

Corresponding author

Correspondence to Fabrice Raynaud.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plawecki, M., Gayrard, N., Jeanson, L. et al. Cardiac remodeling associated with chronic kidney disease is enhanced in a rat model of metabolic syndrome: Preparation of mesenchymal transition. Mol Cell Biochem 479, 29–39 (2024). https://doi.org/10.1007/s11010-023-04710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04710-6

Keywords

Navigation