Skip to main content

Advertisement

Log in

Unraveling the prevalence of various signalling pathways in non-small-cell lung cancer: a review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cancer has become a huge public health issue all around the world. The focus of research is on innovative cancer therapy techniques that include the disease's unique targets. Among the cancer-related deaths that occur, lung cancer is considered to be one of the major, accounting for about 1.6 million fatalities globally in 2012, or nearly 20% of all cancer deaths. Non-small-cell lung cancer, a type of lung cancer comprises upto 84% of lung cancer cases, demonstrating the need for a more effective treatment. A novel category of cancer management, known as targeted cancer medicines, has risen to prominence in recent years. Targeted cancer treatments, like traditional chemotherapy, employ pharmacological drugs to slow cancer development, enhance cell death, and prevent it from spreading. Targeted treatments, as the name implies, work by interfering with particular proteins implicated in cancer. Numerous research conducted in the last several decades have led to the conclusion that signalling pathways are involved in the growth of lung cancer. All malignant tumours are produced, spread, invade, and behave in various abnormal ways due to abnormal pathways. Numerous significant signalling pathways, including the RTK/RAS/MAP-Kinase pathway (hence often referred to as RTK-RAS for simplicity), PI3K/Akt signalling, and others, have been discovered as commonly genetically changed. The current developments in research on various signalling pathways, as well as the underlying mechanisms of the molecules implicated in these pathways, are innovatively summarised in this review. To give a good sense of the study that has been done so far, many routes are placed together. Thus, this review includes the detailed description regarding each pathways, the mutations formed, and the present treatment strategy to overcome the resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

NSCLC:

Non-small-cell lung cancer

SCLC:

Small-cell lung cancer

RTK:

Receptor tyrosine kinase

EGFR:

Epidermal growth factor receptor

EGF:

Epidermal growth factor

TKI:

Tyrosine kinase inhibitor

PFS:

Progression-free survival

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

ALK:

Anaplastic lymphoma kinase

MET:

Mesenchymal–epithelial transition

KRAS:

Kirsten rat sarcoma 2 viral oncogene

PDGF:

Platelet-derived growth factor

References

  1. Visconti R, Morra F, Guggino G, Celetti A (2017) The between now and then of lung cancer chemotherapy and immunotherapy. Int J Mol Sci 18. DOI: https://doi.org/10.3390/ijms18071374

  2. Osmani L, Askin F, Gabrielson E, Li QK (2018) Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol 52:103–109. https://doi.org/10.1016/j.semcancer.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  3. Ferlay J, Colombet M, Soerjomataram I et al (2018) Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387. https://doi.org/10.1016/j.ejca.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  4. West L, Vidwans SJ, Campbell NP, et al (2012) A novel classification of lung cancer into molecular subtypes. PLoS One 7. DOI: https://doi.org/10.1371/journal.pone.0031906

  5. Campbell J, Alexandrov A, Kim J, et al Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. nature.com

  6. Soulier JP, Moro-Sibilot D (2009) First- And second-line therapy for advanced nonsmall cell lung cancer. Eur Respir J 33:915–930. https://doi.org/10.1183/09031936.00132008

    Article  CAS  Google Scholar 

  7. Socinski MA, Evans T, Gettinger S, et al (2013) Treatment of stage IV non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 143. DOI: https://doi.org/10.1378/chest.12-2361

  8. Ramalingam S, Belani C (2008) Systemic chemotherapy for advanced non-small cell lung cancer: Recent advances and future directions. Oncologist 13:5–13. https://doi.org/10.1634/theoncologist.13-s1-5

    Article  CAS  PubMed  Google Scholar 

  9. Chan BA, Hughes BGM (2015) Targeted therapy for non-small cell lung cancer: Current standards and the promise of the future. Transl Lung Cancer Res 4:36–54. https://doi.org/10.3978/j.issn.2218-6751.2014.05.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Putora PM, Schneider T, Rodriguez R, Früh M (2012) Targeted therapy in non-small cell lung cancer. Breathe 8:207–215. https://doi.org/10.1183/20734735.021511

    Article  Google Scholar 

  11. Nasim F, Sabath BF, Eapen GA (2019) Lung Cancer. Med Clin North Am 103:463–473. https://doi.org/10.1016/j.mcna.2018.12.006

    Article  PubMed  Google Scholar 

  12. Wood DE (2015) National comprehensive cancer network (NCCN) clinical practice guidelines for lung cancer screening. Thorac Surg Clin 25:185–197. https://doi.org/10.1016/j.thorsurg.2014.12.003

    Article  PubMed  Google Scholar 

  13. Ahlquist T, Bottillo I, Danielsen SA et al (2008) RAS signaling in colorectal carcinomas through alterations of RAS, RAF, NF1, and/or RASSF1A. Neoplasia 10:680–686. https://doi.org/10.1593/neo.08312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177. https://doi.org/10.1016/0092-8674(89)90054-8

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki AT, Carracedo A, Locasale JW, et al (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4. DOI: https://doi.org/10.1126/scisignal.2001518

  16. Steklov M, Pandolfi S, Baietti MF, et al (2018) Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science (80)362:1177–1182. DOI: https://doi.org/10.1126/science.aap7607

  17. Yang MH, Laurent G, Bause AS et al (2013) HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol Cancer Res 11:1072–1077. https://doi.org/10.1158/1541-7786.MCR-13-0040-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Vega F, Mina M, Armenia J et al (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173:321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santana-Codina N, Roeth AA, Zhang Y, et al (2018) Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 9. DOI: https://doi.org/10.1038/s41467-018-07472-8

  20. Rajalingam K, Schreck R, Rapp UR, Albert Š (2007) Ras oncogenes and their downstream targets. Biochim Biophys Acta - Mol Cell Res 1773:1177–1195. https://doi.org/10.1016/j.bbamcr.2007.01.012

    Article  CAS  Google Scholar 

  21. (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. DOI: https://doi.org/10.1038/nature13385

  22. Ying H, Kimmelman A, Lyssiotis C, et al Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Elsevier

  23. Cai J, Zhang N, Zheng Y et al (2010) The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24:2383–2388. https://doi.org/10.1101/gad.1978810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du X, Yu A, Tao W (2014) The non-canonical Hippo/Mst pathway in lymphocyte development and functions. Acta Biochim Biophys Sin (Shanghai) 47:60–64. https://doi.org/10.1093/abbs/gmu112

    Article  CAS  PubMed  Google Scholar 

  25. Judson RN, Tremblay AM, Knopp P et al (2012) The hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci 125:6009–6019. https://doi.org/10.1242/jcs.109546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aragona M, Panciera T, Manfrin A et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059. https://doi.org/10.1016/j.cell.2013.07.042

    Article  CAS  PubMed  Google Scholar 

  27. Buglioni S, Vici P, Sergi D, et al (2016) Analysis of the hippo transducers TAZ and YAP in cervical cancer and its microenvironment. Oncoimmunology 5. DOI https://doi.org/10.1080/2162402X.2016.1160187

  28. Kim SK, Jung WH, Koo JS (2014) Yes-associated protein (YAP) is differentially expressed in tumor and stroma according to the molecular subtype of breast cancer. Int J Clin Exp Pathol 7:3224–3234

    PubMed  PubMed Central  Google Scholar 

  29. Zhao B, Wei X, Li W et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang G, Lu X, Dey P, et al Targeting YAP-dependent MDSC infiltration impairs tumor progression. AACR

  31. Tanaka K, Osada H, Murakami-Tonami Y et al (2017) Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Lett 385:215–224. https://doi.org/10.1016/j.canlet.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  32. Gao T, Zhou D, Yang C, et al (2013) Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144. DOI: https://doi.org/10.1053/j.gastro.2013.02.037

  33. Duvic B, Hoffmann JA, Meister M, Royet J (2002) Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Curr Biol 12:1923–1927. https://doi.org/10.1016/S0960-9822(02)01297-6

    Article  CAS  PubMed  Google Scholar 

  34. Kovall RA, Gebelein B, Sprinzak D, Kopan R (2017) The canonical notch signaling pathway: Structural and biochemical insights into shape, sugar, and force. Dev Cell 41:228–241. https://doi.org/10.1016/j.devcel.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kopan R, Ilagan MXG (2009) The canonical notch signaling pathway: Unfolding the activation mechanism. Cell 137:216–233. https://doi.org/10.1016/j.cell.2009.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Espinoza I, Miele L (2013) Notch inhibitors for cancer treatment. Pharmacol Ther 139:95–110. https://doi.org/10.1016/j.pharmthera.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conner SD (2016) Regulation of notch signaling through intracellular transport. Int Rev Cell Mol Biol 323:107–127. https://doi.org/10.1016/bs.ircmb.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  38. Kiyokawa H, Morimoto M (2020) Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease. Dev Growth Differ 62:67–79. https://doi.org/10.1111/dgd.12628

    Article  PubMed  Google Scholar 

  39. Caestecker M de, Piek E, Roberts AB (2000) Role of transforming growth factor-β signaling in cancer. J Natl Cancer Inst 92(17): 1388-1402

  40. Aschner Y, Downey GP (2016) Transforming growth factor-B: Master regulator of the respiratory system in health and disease. Am J Respir Cell Mol Biol 54:647–655. https://doi.org/10.1165/rcmb.2015-0391TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hannon GJ, Beach D (1994) Pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest. Nature 371:257–261. https://doi.org/10.1038/371257a0

    Article  CAS  PubMed  Google Scholar 

  42. Datto MB, Li Y, Panus JF et al (1995) Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549. https://doi.org/10.1073/pnas.92.12.5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasegawa Y, Takanashi S, Kanehira Y et al (2001) Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91:964–971. https://doi.org/10.1002/1097-0142(20010301)91:5%3c964::AID-CNCR1086%3e3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  44. Deckers M, Van Dinther M, Buijs J et al (2006) The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209. https://doi.org/10.1158/0008-5472.CAN-05-3560

    Article  CAS  PubMed  Google Scholar 

  45. Rojas A, Padidam M, Cress D, Grady WM (2009) TGF-β receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-β. Biochim Biophys Acta - Mol Cell Res 1793:1165–1173. https://doi.org/10.1016/j.bbamcr.2009.02.001

    Article  CAS  Google Scholar 

  46. Toonkel RL, Borczuk AC, Powell CA (2010) TGF-β signaling pathway in lung adenocarcinoma invasion. J Thorac Oncol 5:153–157. https://doi.org/10.1097/JTO.0b013e3181c8cc0c

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stewart DJ, Chang DW, Ye Y et al (2014) Wnt signaling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J 14:509–522. https://doi.org/10.1038/tpj.2014.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nusse R, Fuerer C, Ching W et al (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73:59–66. https://doi.org/10.1101/sqb.2008.73.035

    Article  CAS  PubMed  Google Scholar 

  49. Mazieres J, He B, You L et al (2005) Wnt signaling in lung cancer. Cancer Lett 222:1–10. https://doi.org/10.1016/j.canlet.2004.08.040

    Article  CAS  PubMed  Google Scholar 

  50. Gao C, Xiao G, Hu J (2014) Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci 4. DOI: https://doi.org/10.1186/2045-3701-4-13

  51. Li C, Chen H, Hu L, et al (2008) Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC Mol Biol 9. DOI: https://doi.org/10.1186/1471-2199-9-11

  52. Mikels A, Minami Y, Nusse R (2009) Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A signaling. J Biol Chem 284:30167–30176. https://doi.org/10.1074/jbc.M109.041715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119:97–108. https://doi.org/10.1016/j.cell.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  54. Komiya Y, Habas R (2008) Wnt signal transduction pathways Organogenesis 4:68–75. https://doi.org/10.4161/org.4.2.5851

    Article  PubMed  Google Scholar 

  55. Bentzinger CF, von Maltzahn J, Dumont NA et al (2014) Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol 205:97–111. https://doi.org/10.1083/jcb.201310035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Movérare-Skrtic S, Henning P, Liu X et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20:1279–1288. https://doi.org/10.1038/nm.3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y (2009) Wnt/Planar cell polarity signaling: A new paradigm for cancer therapy. Mol Cancer Ther 8:2103–2109. https://doi.org/10.1158/1535-7163.MCT-09-0282

    Article  CAS  PubMed  Google Scholar 

  58. Forde PM, Ettinger DS (2013) Targeted therapy for non-small-cell lung cancer: Past, present and future. Expert Rev Anticancer Ther 13:745–758. https://doi.org/10.1586/era.13.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh A, Misra V, Thimmulappa RK et al (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:1865–1876. https://doi.org/10.1371/journal.pmed.0030420

    Article  CAS  Google Scholar 

  60. Ohta T, Iijima K, Miyamoto M et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68:1303–1309. https://doi.org/10.1158/0008-5472.CAN-07-5003

    Article  CAS  PubMed  Google Scholar 

  61. Lu MC, Ji JA, Jiang ZY, You QD (2016) The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: An update. Med Res Rev 36:924–963. https://doi.org/10.1002/med.21396

    Article  CAS  PubMed  Google Scholar 

  62. Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22:578–593. https://doi.org/10.1016/j.molmed.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  63. Kitamura H, Motohashi H (2018) NRF2 addiction in cancer cells. Cancer Sci 109:900–911. https://doi.org/10.1111/cas.13537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yaeger R, Corcoran RB (2019) Targeting alterations in the RAF–MEK pathway. Cancer Discov 9:329–341. https://doi.org/10.1158/2159-8290.CD-18-1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haghighi F, Dahlmann J, Nakhaei-Rad S, et al (2018) BFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling 06 Biological Sciences 0601 Biochemistry and Cell Biology. Cell Commun Signal 16. DOI: https://doi.org/10.1186/s12964-018-0307-1

  66. Roskoski R (2012) ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res 66:105–143. https://doi.org/10.1016/j.phrs.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  67. Peng Q, Deng Z, Pan H et al (2018) Mitogen-activated protein kinase signaling pathway in oral cancer (Review). Oncol Lett 15:1379–1388. https://doi.org/10.3892/ol.2017.7491

    Article  CAS  PubMed  Google Scholar 

  68. Amaddii M, Meister M, Banning A et al (2012) Flotillin-1/Reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. J Biol Chem 287:7265–7278. https://doi.org/10.1074/jbc.M111.287599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanclemente M, Francoz S, Esteban-Burgos L et al (2018) c-RAF ablation induces regression of advanced Kras/Trp53 mutant lung adenocarcinomas by a mechanism independent of MAPK signaling. Cancer Cell 33:217-228.e4. https://doi.org/10.1016/j.ccell.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  70. Leicht DT, Balan V, Kaplun A et al (2007) Raf kinases: Function, regulation and role in human cancer. Biochim Biophys Acta - Mol Cell Res 1773:1196–1212. https://doi.org/10.1016/j.bbamcr.2007.05.001

    Article  CAS  Google Scholar 

  71. Rotow J, Bivona TG (2017) Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer 17:637–658. https://doi.org/10.1038/nrc.2017.84

    Article  CAS  PubMed  Google Scholar 

  72. Guisier F, Dubos-Arvis C, Viñas F et al (2020) Efficacy and safety of anti–PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01–2018. J Thorac Oncol 15:628–636. https://doi.org/10.1016/j.jtho.2019.12.129

    Article  CAS  PubMed  Google Scholar 

  73. Shi H, Hugo W, Kong X et al (2014) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93. https://doi.org/10.1158/2159-8290.CD-13-0642

    Article  CAS  PubMed  Google Scholar 

  74. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  75. Kobayashi M, Sonobe M, et al (2011) Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer. Anticancer Res 31(12):4619-4623

  76. Tian Y, Guo W (2020) A review of the molecular pathways involved in resistance to BRAF inhibitors in patients with advanced-stage melanoma. Med Sci Monit 26. DOI: https://doi.org/10.12659/MSM.920957

  77. Tang HSC, Chen YC (2015) Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma. Int J Nanomedicine 10:3131–3146. https://doi.org/10.2147/IJN.S80150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kron A, Riedel R, Michels S et al (2017) Impact of co-occurring genomic alterations on overall survival of BRAF V600E and non-V600E mutated NSCLC patients: Results of the network genomic medicine. Ann Oncol 28:v461–v462. https://doi.org/10.1093/annonc/mdx380.003

    Article  Google Scholar 

  79. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morris SW, Naeve C, Mathew P et al (1997) ALK the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14:2175–2188. https://doi.org/10.1038/sj.onc.1201062

    Article  CAS  PubMed  Google Scholar 

  81. Pulford K, Lamant L, Morris SW et al (1997) Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 89:1394–1404. https://doi.org/10.1182/blood.v89.4.1394

    Article  CAS  PubMed  Google Scholar 

  82. Roskoski R (2013) Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 68:68–94. https://doi.org/10.1016/j.phrs.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  83. Bossi RT, Saccardo MB, Ardini E et al (2010) Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors. Biochemistry 49:6813–6825. https://doi.org/10.1021/bi1005514

    Article  CAS  PubMed  Google Scholar 

  84. Sreelakshmi M, George JG, Mishra R, Aneesh TP (2019) Targeting apoptosis by inhibiting cMET amplification due to EGFR resistance using benzofuran derivatives. In: Res. J. Chem. Environ. https://www.researchgate.net/publication/349392751_Targeting_Apoptosis_by_inhibiting_cMET_Amplification_due_to_EGFR_resistance_using_Benzofuran_Derivative. Accessed 14 Mar 2022

  85. Califano R, Romanidou O, Mountzios G et al (2016) Management of NSCLC disease progression after first-line EGFR tyrosine kinase inhibitors: What are the issues and potential therapies? Drugs 76:831–840. https://doi.org/10.1007/s40265-016-0578-z

    Article  CAS  PubMed  Google Scholar 

  86. Joshua JM, Salima KD, Pavithran K, Vijayan M (2018) Crizotinib, an effective agent in ROS1-rearranged adenocarcinoma of lungs: A case report. Clin Med Insights Case Reports 11:1–3. https://doi.org/10.1177/1179547617749615

    Article  CAS  Google Scholar 

  87. Parambi DGT, Noorulla KM, Uddin MS, Mathew B (2019) Epidermal growth factor receptor: Promising targets for non-small-cell lung cancer. Oxidative Stress Lung Dis 2:465–471. https://doi.org/10.1007/978-981-32-9366-3_21

    Article  Google Scholar 

  88. Perez R, Crombet T, de Leon J, Moreno E (2013) A view on EGFR-targeted therapies from the oncogene-addiction perspective. Front Pharmacol 4 APR. DOI: https://doi.org/10.3389/fphar.2013.00053

  89. Remon J, Morán T, Majem M et al (2014) Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: A new era begins. Cancer Treat Rev 40:93–101. https://doi.org/10.1016/j.ctrv.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  90. Thomas P, Vincent B, George C et al (2019) A comparative study on erlotinib and gefitinib therapy in non-small cell lung carcinoma patients. Indian J Med Res 150:67–72. https://doi.org/10.4103/ijmr.IJMR_1896_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu L, Ke L, Zhang Z et al (2020) Development of EGFR TKIs and options to manage resistance of third-generation EGFR TKI osimertinib: Conventional ways and immune checkpoint inhibitors. Front Oncol 10:2778. https://doi.org/10.3389/fonc.2020.602762

    Article  Google Scholar 

  92. Chen J, Wang R, Zhang K, Chen LB (2014) Long non-coding RNAs in non-small cell lung cancer as biomarkers and therapeutic targets. J Cell Mol Med 18:2425–2436. https://doi.org/10.1111/jcmm.12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Le X, Nilsson M, Goldman J et al (2021) Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol 16:205–215. https://doi.org/10.1016/j.jtho.2020.10.006

    Article  CAS  PubMed  Google Scholar 

  94. Ferrara N, Adamis AP (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15:385–403. https://doi.org/10.1038/nrd.2015.17

    Article  CAS  PubMed  Google Scholar 

  95. Larsen AK, Ouaret D, El Ouadrani K, Petitprez A (2011) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131:80–90. https://doi.org/10.1016/j.pharmthera.2011.03.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Sabitha M., Principal, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682041, Kerala, India, for providing assistance for this work.

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Aathira Sujathan Nair, Ajay P Jayan and Anandu K R performed the literature search, data analysis and drafted the manuscript and Dr. Saiprabha V N and Dr. Leena K Pappachen critically revised the work.

Corresponding authors

Correspondence to V N Saiprabha or Leena K. Pappachen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Conflict of interest

Aathira Sujathan Nair, Ajay P Jayan, Anandu K R, Dr Leena K Pappachen, and Dr Saiprabha V N have no conflict of interest to declare.

Consent for Publication

We give our permission to publish this work.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.S., Jayan, A.P., Anandu, K.R. et al. Unraveling the prevalence of various signalling pathways in non-small-cell lung cancer: a review. Mol Cell Biochem 478, 2875–2890 (2023). https://doi.org/10.1007/s11010-023-04704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04704-4

Keywords

Navigation