Skip to main content
Log in

The effect of maternal period nutritional status on oro-sensorial fat perception and taste preference in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CD36 and GPR120 play an important role in the perception and preference for fat-rich food consumption. We aimed to investigate the relationship between oro-gustatory perception of lipids, fatty taste preference, and maternal (Gestation + Lactation)-maturation period nutrition status in offspring Sprague–Dawley rats. In our study, mother rats were fed with control (C) or high-fat diets (HFD) during gestation (21 days) and lactation (21 days) periods. After weaning, the offspring were fed with control (C) or high-fat diets (HFD) during the maturation (120 days) period. Daily calorie intake and weekly body weight measurements were monitored. Two-bottle preference (TBPT) and licking tests measured the fat perceptions and preferences. Plasma levels of insulin, leptin, glucose, and triglyceride were measured. The protein and mRNA expressions of CD36 and GPR120 in the circumvallate papillae (CVP) were determined. The 48 h TBPT results revealed that maternal HFD-exposed offspring rats significantly preferred 2% rapeseed oil solution regardless of the type of maturation diet. According to the licking test, C/C group (C diet exposed group in maternal and maturation periods) offspring licked 0.1% oleic acid-containing water more than C/HFD (C diet exposed in maternal period and HFD exposed group in maturation period) and HFD/HFD group. (HFD exposed group in maternal and maturation periods) groups. Plasma insulin and leptin concentrations significantly increased in HFD/HFD groups compared to C/C group. CD36 protein expressions were significantly lower in HFD/HFD than C/HFD and HFD/C groups. GPR120 and GNAT3 mRNA expressions in HFD/C group were significantly higher than in C/HFD group. Our results suggest that HFD exposure during maternal and maturation period may play a role in fat perception/preference through oral lipid sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Passilly-Degrace P, Gaillard D, Besnard P (2009) Orosensory perception of dietary lipids in mammals. Results Probl Cell Differ 47:221–238. https://doi.org/10.1007/400_2008_7

    Article  CAS  PubMed  Google Scholar 

  2. Drewnowski A (1997) Taste preferences and food intake. Annu Rev Nutr 17:237–253. https://doi.org/10.1146/annurev.nutr.17.1.237

    Article  CAS  PubMed  Google Scholar 

  3. Semerciöz AS, Yılmaz B, Özilgen M (2020) Thermodynamic assessment of allocation of energy and exergy of the nutrients for the life processes during pregnancy. Br J Nutr 124:742–753. https://doi.org/10.1017/s0007114520001646

    Article  PubMed  Google Scholar 

  4. Khan NA, Besnard P (2009) Oro-sensory perception of dietary lipids: new insights into the fat taste transduction. Biochim Biophys Acta 1791:149–155. https://doi.org/10.1016/j.bbalip.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  5. Kulkarni BV, Mattes RD (2014) Lingual lipase activity in the orosensory detection of fat by humans. Am J Physiol Regul Integr Comp Physiol 306:R879–R885. https://doi.org/10.1152/ajpregu.00352.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reed DR, Xia MB (2015) Recent advances in fatty acid perception and genetics. Adv Nutr 6:353S-S360. https://doi.org/10.3945/an.114.007005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyamoto J, Hasegawa S, Kasubuchi M, Ichimura A, Nakajima A, Kimura I (2016) Nutritional signaling via free fatty acid receptors. Int J Mol Sci 17:450. https://doi.org/10.3390/ijms17040450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115:3177–3184. https://doi.org/10.1172/JCI25299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, Besnard P, Abumrad NA, Khan NA (2014) CD36- and GPR120-mediated Ca(2)(+) signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146:995–1005. https://doi.org/10.1053/j.gastro.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux KP 3rd, Primeaux SD (2013) Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol 305:R1346–R1355. https://doi.org/10.1152/ajpregu.00582.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM (2011) Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem 113:663–667. https://doi.org/10.1016/j.acthis.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Ventura AK, Worobey J (2013) Early influences on the development of food preferences. Curr Biol 23:R401–R408. https://doi.org/10.1016/j.cub.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  13. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151:4756–4764. https://doi.org/10.1210/en.2010-0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28:12107–12119. https://doi.org/10.1523/JNEUROSCI.2642-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ong ZY, Muhlhausler BS (2011) Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J 25:2167–2179. https://doi.org/10.1096/fj.10-178392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gugusheff JR, Bae SE, Rao A, Clarke IJ, Poston L, Taylor PD, Coen CW, Muhlhausler BS (2016) Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring. Behav Brain Res 301:124–131. https://doi.org/10.1016/j.bbr.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  17. Kutlu S, Aydin M, Alcin E, Ozcan M, Bakos J, Jezova D, Yilmaz B (2010) Leptin modulates noradrenaline release in the paraventricular nucleus and plasma oxytocin levels in female rats: a microdialysis study. Brain Res 1317:87–91. https://doi.org/10.1016/j.brainres.2009.12.044

    Article  CAS  PubMed  Google Scholar 

  18. Aklan I, Sayar Atasoy N, Yavuz Y, Ates T, Coban I, Koksalar F, Filiz G, Topcu IC, Oncul M, Dilsiz P, Cebecioglu U, Alp MI, Yilmaz B, Davis DR, Hajdukiewicz K, Saito K, Konopka W, Cui H, Atasoy D (2020) NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab 31:313-326 e5. https://doi.org/10.1016/j.cmet.2019.11.016

    Article  CAS  PubMed  Google Scholar 

  19. Yilmaz B, Gilmore DP, Wilson CA (1996) Inhibition of the pre-ovulatory LH surge in the rat by central noradrenergic mediation: involvement of an anaesthetic (urethane) and opioid receptor agonists. Biog Amines 12:423–435

    CAS  Google Scholar 

  20. Kutlu S, Yilmaz B, Canpolat S, Sandal S, Ozcan M, Kumru S, Kelestimur H (2004) Mu opioid modulation of oxytocin secretion in late pregnant and parturient rats. Involve Noradrenergic Neurotrans Neuroendocrinol 79:197–203. https://doi.org/10.1159/000078101

    Article  CAS  Google Scholar 

  21. Peterschmitt Y, Abdoul-Azize S, Murtaza B, Barbier M, Khan AS, Millot JL, Khan NA (2018) Fatty acid lingual application activates gustatory and reward brain circuits in the mouse. Nutrients. https://doi.org/10.3390/nu10091246

    Article  PubMed  PubMed Central  Google Scholar 

  22. Canpolat S, Tug N, Seyran AD, Kumru S, Yilmaz B (2010) Effects of raloxifene and estradiol on bone turnover parameters in intact and ovariectomized rats. J Physiol Biochem 66:23–28. https://doi.org/10.1007/s13105-010-0008-8

    Article  CAS  PubMed  Google Scholar 

  23. Barlow LA (2015) Progress and renewal in gustation: new insights into taste bud development. Development 142:3620–3629. https://doi.org/10.1242/dev.120394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Besnard P, Passilly-Degrace P, Khan NA (2016) Taste of fat: a sixth taste modality? Physiol Rev 96:151–176. https://doi.org/10.1152/physrev.00002.2015

    Article  CAS  PubMed  Google Scholar 

  25. Gaillard D, Stratford JM (2016) Measurement of behavioral taste responses in mice: two-bottle preference, lickometer, and conditioned taste-aversion tests. Curr Protoc Mouse Biol 6:380–407. https://doi.org/10.1002/cpmo.18

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30:8376–8382. https://doi.org/10.1523/JNEUROSCI.0496-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, Merlin JF, Poirier H, Niot I, Khan NA, Passilly-Degrace P, Besnard P (2013) Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J Lipid Res 54:2485–2494. https://doi.org/10.1194/jlr.M039446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayar A, Bryant JL, Boughter JD, Heck DH (2006) A low-cost solution to measure mouse licking in an electrophysiological setup with a standard analog-to-digital converter. J Neurosci Methods 153:203–207. https://doi.org/10.1016/j.jneumeth.2005.10.023

    Article  PubMed  Google Scholar 

  29. Martin C, Passilly-Degrace P, Gaillard D, Merlin JF, Chevrot M, Besnard P (2011) The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS ONE 6:e24014. https://doi.org/10.1371/journal.pone.0024014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCormack DN, Clyburn VL, Pittman DW (2006) Detection of free fatty acids following a conditioned taste aversion in rats. Physiol Behav 87:582–594. https://doi.org/10.1016/j.physbeh.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  31. Birsen I, Gemici B, Acar N, Ustunel I, Izgut-Uysal VN (2017) The role of apelin in the healing of water-immersion and restraint stress-induced gastric damage. J Physiol Sci 67:373–385. https://doi.org/10.1007/s12576-016-0469-9

    Article  CAS  PubMed  Google Scholar 

  32. Matsumura S, Mizushige T, Yoneda T, Iwanaga T, Tsuzuki S, Inoue K, Fushiki T (2007) GPR expression in the rat taste bud relating to fatty acid sensing. Biomed Res 28:49–55. https://doi.org/10.2220/biomedres.28.49

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Zhi D, Cheng R, Li J, Luo C, Li H (2021) The neuroprotective role of SIRT1/PGC-1alpha signaling in limb postconditioning in cerebral ischemia/reperfusion injury. Neurosci Lett 749:135736. https://doi.org/10.1016/j.neulet.2021.135736

    Article  CAS  PubMed  Google Scholar 

  34. Gugusheff JR, Ong ZY, Muhlhausler BS (2015) The early origins of food preferences: targeting the critical windows of development. FASEB J 29:365–373. https://doi.org/10.1096/fj.14-255976

    Article  CAS  PubMed  Google Scholar 

  35. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279:E83–E87. https://doi.org/10.1152/ajpendo.2000.279.1.E83

    Article  CAS  PubMed  Google Scholar 

  36. Blundell JE, MacDiarmid JI (1997) Fat as a risk factor for overconsumption: satiation, satiety, and patterns of eating. J Am Diet Assoc 97:S63–S69. https://doi.org/10.1016/s0002-8223(97)00733-5

    Article  CAS  PubMed  Google Scholar 

  37. Gugusheff JR, Vithayathil M, Ong ZY, Muhlhausler BS (2013) The effects of prenatal exposure to a “junk food” diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation. J Dev Orig Health Dis 4:348–357. https://doi.org/10.1017/S2040174413000330

    Article  CAS  PubMed  Google Scholar 

  38. Naef L, Moquin L, Dal Bo G, Giros B, Gratton A, Walker CD (2011) Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 176:225–236. https://doi.org/10.1016/j.neuroscience.2010.12.037

    Article  CAS  PubMed  Google Scholar 

  39. Gaillard D, Passilly-Degrace P, Besnard P (2008) Molecular mechanisms of fat preference and overeating. Ann N Y Acad Sci 1141:163–175. https://doi.org/10.1196/annals.1441.028

    Article  CAS  PubMed  Google Scholar 

  40. Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH (2014) Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. Am J Physiol Regul Integr Comp Physiol 306:R499-509. https://doi.org/10.1152/ajpregu.00419.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL (2012) Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes 61:2833–2841. https://doi.org/10.2337/db11-0957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Howie GJ, Sloboda DM, Kamal T, Vickers MH (2009) Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 587:905–915. https://doi.org/10.1113/jphysiol.2008.163477

    Article  CAS  PubMed  Google Scholar 

  43. Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH (2009) Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 58:1116–1125. https://doi.org/10.2337/db08-1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Xu F, Zhang XJ, Jin RM, Li X (2015) Effect of high-fat diet on cholesterol metabolism in rats and its association with Na(+)/K(+)-ATPase/Src/pERK signaling pathway. J Huazhong Univ Sci Technolog Med Sci 35:490–494. https://doi.org/10.1007/s11596-015-1458-6

    Article  CAS  PubMed  Google Scholar 

  45. Ehehalt R, Fullekrug J, Pohl J, Ring A, Herrmann T, Stremmel W (2006) Translocation of long chain fatty acids across the plasma membrane–lipid rafts and fatty acid transport proteins. Mol Cell Biochem 284:135–140. https://doi.org/10.1007/s11010-005-9034-1

    Article  CAS  PubMed  Google Scholar 

  46. Tekin S, Erden Y, Sandal S, Etem Onalan E, Ozyalin F, Ozen H, Yilmaz B (2017) Effects of apelin on reproductive functions: relationship with feeding behavior and energy metabolism. Arch Physiol Biochem 123:9–15. https://doi.org/10.1080/13813455.2016.1211709

    Article  CAS  PubMed  Google Scholar 

  47. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232. https://doi.org/10.1038/nrg3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800. https://doi.org/10.1038/381796a0

    Article  CAS  PubMed  Google Scholar 

  49. Kisioglu B, Nergiz-Unal R (2020) Potential effect of maternal dietary sucrose or fructose syrup on CD36, leptin, and ghrelin-mediated fetal programming of obesity. Nutr Neurosci 23:210–220. https://doi.org/10.1080/1028415X.2018.1491151

    Article  CAS  PubMed  Google Scholar 

  50. Song L, Chen K, Yan J, Zhang Y, Mao X, Lu B, Sun B (2019) Maternal high-fat diet during gestation and lactation increases conditioned aversion threshold for sucrose and alters sweet taste receptors expression in taste buds in rat offspring. Physiol Behav 212:112709. https://doi.org/10.1016/j.physbeh.2019.112709

    Article  CAS  PubMed  Google Scholar 

  51. Yilmaz B, Kutlu S, Canpolat S, Sandal S, Ayar A, Mogulkoc R, Kelestimur H (2001) Effects of paint thinner exposure on serum LH, FSH and testosterone levels and hypothalamic catecholamine contents in the male rat. Biol Pharm Bull 24:163–166. https://doi.org/10.1248/bpb.24.163

    Article  CAS  PubMed  Google Scholar 

  52. Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, Ates T, Oncul M, Coban I, Ates Oz E, Cebecioglu U, Alp MI, Yilmaz B, Atasoy D (2020) MCH neuron activity is sufficient for reward and reinforces feeding. Neuroendocrinology 110:258–270. https://doi.org/10.1159/000501234

    Article  CAS  PubMed  Google Scholar 

  53. Khan AS, Subramaniam S, Dramane G, Khelifi D, Khan NA (2017) ERK1 and ERK2 activation modulates diet-induced obesity in mice. Biochimie 137:78–87. https://doi.org/10.1016/j.biochi.2017.03.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Deniz Atasoy (Iowa University, Department of Neuroscience and Pharmacology) for his technical advice in designing licking tests.

Funding

This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Project number: 117S384.

Author information

Authors and Affiliations

Authors

Contributions

EG: performed experiments, analyzed the results and assisted in writing the manuscript. MEK, CCC and AG: assisted in performing the experiments. VAB and CSE: assisted in writing the manuscript. BY: supervised the project and the manuscript. BG: designed the project, found the budget from TUBITAK, supervised the experimental procedure and experiments, analyzed the data, and wrote the manuscript.

Corresponding authors

Correspondence to Bayram Yılmaz or Burcu Gemici.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethical approval

The study protocol was approved by the Yeditepe University Experimental Animal Ethics Committee (protocol # 17.12.2016.575).

Consent to participate

Not Applicable.

Consent to publish

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günalan, E., Karagöz, M.E., Cıvaş, C.C. et al. The effect of maternal period nutritional status on oro-sensorial fat perception and taste preference in rats. Mol Cell Biochem 478, 2861–2873 (2023). https://doi.org/10.1007/s11010-023-04703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04703-5

Keywords

Navigation