Skip to main content
Log in

Effect of acute cold exposure on cardiac mitochondrial function: role of sirtuins

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac function depends mainly on mitochondrial metabolism. Cold conditions increase the risk of cardiovascular diseases by increasing blood pressure. Adaptive thermogenesis leads to increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of acute cold exposure on cardiac mitochondrial function and its regulation by sirtuins. Significant increase in mitochondrial DNA copy number as measured by the ratio between mitochondrial-coded COX-II and nuclear-coded cyclophilin A gene expression by qRT-PCR and increase in the expression of PGC-1α, a mitochondriogenic factor and its downstream target NRF-1 were observed on cold exposure. This was associated with an increase in the activity of SIRT-1, which is known to activate PGC-1α. Mitochondrial SIRT-3 was also upregulated. Increase in sirtuin activity was reflected in total protein acetylome, which decreased in cold-exposed cardiac tissue. An increase in mitochondrial MnSOD further indicated enhanced mitochondrial function. Further evidence for this was obtained from ex vivo studies of cardiac tissue treated with norepinephrine, which caused a significant increase in mitochondrial MnSOD and SIRT-3. SIRT-3 appears to mediate the regulation of MnSOD, as treatment with AGK-7, a SIRT-3 inhibitor reversed the norepinephrine-induced upregulation of MnSOD. It, therefore, appears that SIRT-3 activation in response to SIRT-1–PGC-1α activation contributes to the regulation of cardiac mitochondrial activity during acute cold exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Abbreviations

BAT:

Brown adipose tissue

NE:

Norepinephrine

SNS:

Sympathetic nervous system

Tfam:

Mitochondrial transcription factor A

UCP-1:

Uncoupling Protein-1

SOD:

Superoxide dismutase

References

  1. Fares A (2013) Winter cardiovascular diseases phenomenon. N Am J Med Sci 5(4):266. https://doi.org/10.4103/1947-2714.110430

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu C, Yavar Z, Sun Q (2015) Cardiovascular response to thermoregulatory challenges. Am J Physiology-Heart Circ Physiol 309(11):H1793–H1812. https://doi.org/10.1152/ajpheart.00199.2015

    Article  CAS  Google Scholar 

  3. Bunker A, Wildenhain J, Vandenbergh A, Henschke N, Rocklöv J, Hajat S, Sauerborn R (2016) Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine 6:258–268. https://doi.org/10.1016/j.ebiom.2016.02.034

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ryti NR, Guo Y, Jaakkola JJ (2016) Global association of cold spells and adverse health effects: a systematic review and meta-analysis. Environ Health Perspect 124(1):12–22. https://doi.org/10.1289/ehp.1408104

    Article  PubMed  Google Scholar 

  5. Ryti NR, Mäkikyrö EM, Antikainen H, Hookana E, Junttila MJ, Ikäheimo TM, Kortelainen ML, Huikuri HV, Jaakkola JJ (2017) Risk of sudden cardiac death in relation to season-specific cold spells: a case–crossover study in Finland. BMJ Open 7(11):e017398. https://doi.org/10.1136/bmjopen-2017-017398

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song X, Wang S, Hu Y, Yue M, Zhang T, Liu Y, Tian J, Shang K (2017) Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ 586:241–254. https://doi.org/10.1016/j.scitotenv.2017.01.212

    Article  CAS  PubMed  Google Scholar 

  7. Fregly MJ, Rossi F, Sun Z, Tümer N, Cade R, Hegland D, Yürekli M (1994) Effect of chronic treatment with prazosin and L-arginine on the elevation of blood pressure during cold exposure. Pharmacology 49(6):351–362. https://doi.org/10.1159/000139254

    Article  CAS  PubMed  Google Scholar 

  8. Sun Z, Cade R, Katovich MJ, Fregly MJ (1998) Body fluid distribution in rats with cold-induced hypertension. Physiol Behav 65(4–5):879–884. https://doi.org/10.1016/s0031-9384(98)00250-9

    Article  Google Scholar 

  9. Sun Z, Cade R (2000) Cold-induced hypertension and diuresis. J Therm Biol 25(1–2):105–109. https://doi.org/10.1016/S0306-4565(99)00085-6

    Article  CAS  Google Scholar 

  10. Fregly MJ, Kikta DC, Threatte RM, Torres JL, Barney CC (1989) Development of hypertension in rats during chronic exposure to cold. J Appl Physiol 66(2):741–749. https://doi.org/10.1152/jappl.1989.66.2.741

    Article  CAS  PubMed  Google Scholar 

  11. Sun Z, Cade R, Tatum C (2001) Central imidazoline and angiotensin II receptors in cardiovascular responses to chronic cold exposure in rats. J Therm Biol 26(4–5):513–518. https://doi.org/10.1016/S0306-4565(01)00071-7

    Article  CAS  Google Scholar 

  12. Sun Z, Cade R, Morales C (2002) Role of central angiotensin II receptors in cold-induced hypertension. Am J Hypertens 15(1):85–92. https://doi.org/10.1016/s0895-7061(01)02230-0

    Article  CAS  PubMed  Google Scholar 

  13. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE (2020) Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 1(53):214–223. https://doi.org/10.1016/j.mito.2020.06.004

    Article  CAS  Google Scholar 

  14. Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, Rotter JI (2020) Evaluation of mitochondrial DNA copy number estimation techniques. PLoS ONE 15(1):e0228166. https://doi.org/10.1371/journal.pone.0228166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown GC, Murphy MP, Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

    Article  Google Scholar 

  16. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91(4):1309–1313. https://doi.org/10.1073/pnas.91.4.1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839. https://doi.org/10.1016/s0092-8674(00)81410-5

    Article  CAS  PubMed  Google Scholar 

  18. Gustafsson ÅB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77(2):334–343. https://doi.org/10.1093/cvr/cvm005

    Article  CAS  PubMed  Google Scholar 

  19. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145. https://doi.org/10.1016/j.tem.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  21. Kane AE, Sinclair DA (2018) Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res 123(7):868–885. https://doi.org/10.1161/circresaha.118.312498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kupis W, Pałyga J, Tomal E, Niewiadomska E (2016) The role of sirtuins in cellular homeostasis. J Physiol Biochem 3:371–380. https://doi.org/10.1007/s13105-016-0492-6

    Article  CAS  Google Scholar 

  23. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434(7029):113–118. https://doi.org/10.1038/nature03354

    Article  CAS  PubMed  Google Scholar 

  24. Yang W, Nagasawa K, Münch C, Xu Y, Satterstrom K, Jeong S, Hayes SD, Jedrychowski MP, Vyas FS, Zaganjor E, Guarani V (2016) Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167(4):985–1000. https://doi.org/10.1016/j.cell.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Investig 119(9):2758–2771. https://doi.org/10.1172/jci39162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914. https://doi.org/10.18632/aging.100252

    Article  CAS  PubMed  Google Scholar 

  27. Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY, Gupta M, Nagalingam RS, Wolfgeher D, Verdin E, Gupta MP (2015) SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol Cell Biol 36(5):678–692. https://doi.org/10.1128/mcb.00586-15

    Article  PubMed  Google Scholar 

  28. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5(3):144. https://doi.org/10.18632/aging.100544

    Article  CAS  PubMed  Google Scholar 

  29. Tao R, Vassilopoulos A, Parisiadou L, Yan Y, Gius D (2014) Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 20(10):1646–1654. https://doi.org/10.1089/ars.2013.5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL III, Goodyear LJ, Tong Q (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY) 1(9):771. https://doi.org/10.18632/aging.100075

    Article  CAS  PubMed  Google Scholar 

  31. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y (2010) Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 5(7):e11707. https://doi.org/10.1371/journal.pone.0011707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klingenberg M (1990) Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem Sci 15(3):108–112. https://doi.org/10.1016/0968-0004(90)90194-g

    Article  CAS  PubMed  Google Scholar 

  33. Cannon B, Nedergaard JAN (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359. https://doi.org/10.1152/physrev.00015.2003

    Article  CAS  PubMed  Google Scholar 

  34. Sellers EA, Scott JW, Thomas N (1954) Electrical activity of skeletal muscle of normal and acclimatized rats on exposure to cold. Am J Physiology-Legacy Content 177(3):372–376. https://doi.org/10.1152/ajplegacy.1954.177.3.372

    Article  CAS  Google Scholar 

  35. Cottle WH, Carlson LD (1956) Regulation of Heat Production in Gold-Adapted Rats. Proc Soc Exp Biol Med 92(4):845–849. https://doi.org/10.3181/00379727-92-22632

    Article  CAS  PubMed  Google Scholar 

  36. Heroux OJSH, Hart JS, Depocas F (1956) Metabolism and muscle activity of anesthetized warm and cold acclimated rats on exposure to cold. J Appl Physiol 9(3):399–403. https://doi.org/10.1152/jappl.1956.9.3.399

    Article  CAS  PubMed  Google Scholar 

  37. Hart JS, Heroux O, Depocas F (1956) Cold acclimation and the electromyogram of unanesthetized rats. J Appl Physiol 9(3):404–408. https://doi.org/10.1152/jappl.1956.9.3.404

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh AC, Carlson LD (1957) Role of adrenaline and noradrenaline in chemical regulation of heat production. Am J Physiology-Legacy Content 190(2):243–246. https://doi.org/10.1152/ajplegacy.1957.190.2.243

    Article  CAS  Google Scholar 

  39. Hsieh ACL, Carlson LD, Gray G (1957) Role of the sympathetic nervous system in the control of chemical regulation of heat production. Am J Physiology-Legacy Content 190(2):247–251. https://doi.org/10.1152/ajplegacy.1957.190.2.247

    Article  CAS  Google Scholar 

  40. Papanek PE, Wood CE, Fregly MJ (1991) Role of the sympathetic nervous system in cold-induced hypertension in rats. J Appl Physiol 71(1):300–306. https://doi.org/10.1152/jappl.1991.71.1.300

    Article  CAS  PubMed  Google Scholar 

  41. Chung N, Park J, Lim K (2017) The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J Exerc Nutr Biochem 21(2):39. https://doi.org/10.20463/jenb.2017.0020

    Article  Google Scholar 

  42. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280(14):13560–13567. https://doi.org/10.1074/jbc.m414670200

    Article  CAS  PubMed  Google Scholar 

  43. Ikäheimo TM (2018) Cardiovascular diseases, cold exposure and exercise. Temperature 5(2):123–146

    Article  Google Scholar 

  44. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874. https://doi.org/10.1016/0019-2791(71)90454-x

    Article  CAS  PubMed  Google Scholar 

  45. Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, Mayer GD, Greenamyre JT, Meyer JN (2015) PCR based determination of mitochondrial DNA copy number in multiple species. Mitochondrial Regulation. Humana Press, New York, NY, pp 23–38

    Chapter  Google Scholar 

  46. Edward E, Luk C, Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276(50):47556–47562. https://doi.org/10.1074/jbc.m108923200

    Article  Google Scholar 

  47. Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E (2013) Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 97(10):4563–4576. https://doi.org/10.1007/s00253-012-4672-1

    Article  CAS  PubMed  Google Scholar 

  48. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  49. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Watson SA, Scigliano M, Bardi I, Ascione R, Terracciano CM, Perbellini F (2017) Preparation of viable adult ventricular myocardial slices from large and small mammals. Nature Protoc 12(12):2623–2639. https://doi.org/10.1038/nprot.2017.139

    Article  CAS  Google Scholar 

  51. Yang NC, Song TY, Chen MY, Hu ML (2011) Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD+ level, SIRT1 activity and replicative lifespan of human Hs68 cells. Biogerontology 12(6):527–536. https://doi.org/10.1007/s10522-011-9342-7

    Article  CAS  PubMed  Google Scholar 

  52. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667. https://doi.org/10.1016/j.cmet.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12(6):534–541. https://doi.org/10.1038/embor.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu Y, Park SH, Ozden O, Kim HS, Jiang H, Vassilopoulos A, Spitz DR, Gius D (2012) Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radical Biol Med 53(4):828–833. https://doi.org/10.1016/j.freeradbiomed.2012.06.020

    Article  CAS  Google Scholar 

  55. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404(6778):652–660

    Article  CAS  PubMed  Google Scholar 

  56. Collins S (2012) β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol 3(2):102. https://doi.org/10.3389/fendo.2011.00102

    Article  Google Scholar 

  57. Cypess AM, Weiner LS, Roberts-Toler C, Elía EF, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21(1):33–38. https://doi.org/10.1016/j.cmet.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90. https://doi.org/10.1210/er.2002-0012

    Article  CAS  PubMed  Google Scholar 

  59. Popov LD (2020) Mitochondrial biogenesis: An update. J Cell Mol Med 24(9):4892–4899. https://doi.org/10.1111/jcmm.15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeng JY, Yeh TS, Lee JW, Lin SH, Fong TH, Hsieh RH (2008) Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem 103(2):347–357. https://doi.org/10.1002/jcb.21625

    Article  CAS  PubMed  Google Scholar 

  61. Butow RA, Bahassi EM (1999) Adaptive thermogenesis: orchestrating mitochondrial biogenesis. Curr Biol 9(20):R767–R769. https://doi.org/10.1016/s0960-9822(00)80008-1

    Article  CAS  PubMed  Google Scholar 

  62. Gao Y, Qimuge NR, Qin J, Cai R, Li X, Chu GY, Pang WJ, Yang GS (2018) Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue. Animal 12(7):1435–1441. https://doi.org/10.1017/s1751731117002981

    Article  CAS  PubMed  Google Scholar 

  63. Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA (2009) The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol 297(1):C217–C225. https://doi.org/10.1152/ajpcell.00070.2009

    Article  CAS  PubMed  Google Scholar 

  64. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4):884S-S890. https://doi.org/10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022. https://doi.org/10.1073/pnas.0705070104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM (1999) Activation of PPARγ coactivator-1 through transcription factor docking. Science 286(5443):1368–1371. https://doi.org/10.1126/science.286.5443.1368

    Article  CAS  PubMed  Google Scholar 

  67. Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab 3(6):429–438. https://doi.org/10.1016/j.cmet.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  68. Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P, O’Malley BW, Auwerx J (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proc Natl Acad Sci USA 105(44):17187–17192. https://doi.org/10.1073/pnas.0808207105

    Article  PubMed  PubMed Central  Google Scholar 

  69. Park DR, Kim JS, Kim CK (2014) The effect of SIRT1 protein knock down on PGC-1α acetylation during skeletal muscle contraction. J Exerc Nutr Biochem 18(1):1. https://doi.org/10.5717/jenb.2014.18.1.1

    Article  Google Scholar 

  70. Mulligan JD, Gonzalez AA, Stewart AM, Carey HV, Saupe KW (2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J Physiol 580(2):677–684. https://doi.org/10.1113/jphysiol.2007.128652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerhart-Hines Z, Dominy JE Jr, Blättler SM, Jedrychowski MP, Banks AS, Lim JH, Chim H, Gygi SP, Puigserver P (2011) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol Cell 44(6):851–863. https://doi.org/10.1016/j.molcel.2011.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei X, Jia R, Yang Z, Jiang J, Huang J, Yan J, Luo X (2020) NAD+/sirtuin metabolism is enhanced in response to cold-induced changes in lipid metabolism in mouse liver. FEBS Lett 594(11):1711–1725. https://doi.org/10.1002/1873-3468.13779

    Article  CAS  PubMed  Google Scholar 

  73. Perović A, Unić A, Dumić J (2014) Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem Med 24(2):235–247. https://doi.org/10.11613/bm.2014.026

    Article  Google Scholar 

  74. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27(24):8807–8814. https://doi.org/10.1128/mcb.01636-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49(1):186–199. https://doi.org/10.1016/j.molcel.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  76. Hirschey MD, Shimazu T, Huang JY, Schwer B, Verdin E (2011) SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harbor symposia on quantitative biology, vol 76. Cold Spring Harbor Laboratory Press, Long Island, pp 267–277. https://doi.org/10.1101/sqb.2011.76.010850

    Chapter  Google Scholar 

  77. Kwon S, Seok S, Yau P, Li X, Kemper B, Kemper JK (2017) Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. J Biol Chem 292(42):17312–17323. https://doi.org/10.1074/jbc.m117.778720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Holley AK, Clair DKS (2016) Manganese superoxide dismutase (MnSOD) and its importance in mitochondrial function and cancer. Redox-Active Therapeutics. Springer, Cham, pp 11–50. https://doi.org/10.1016/j.freeradbiomed.2012.03.009

    Chapter  Google Scholar 

  79. Lu J, Zhang H, Chen X, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W, Xia Q (2017) A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radical Biol Med 112:287–297. https://doi.org/10.1016/j.freeradbiomed.2017.07.012

    Article  CAS  Google Scholar 

  80. Murphy MP (2009) How mitochondria produce reactive oxygen species. Bioche J 417(1):1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  Google Scholar 

  81. Yu T, Dohl J, Elenberg F, Chen Y, Deuster P (2019) Curcumin induces concentration-dependent alterations in mitochondrial function through ROS in C2C12 mouse myoblasts. J Cell Physiol 234(5):6371–6381. https://doi.org/10.1002/jcp.27370

    Article  CAS  PubMed  Google Scholar 

  82. Yoboue ED, Devin A (2012) Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol. https://doi.org/10.1155/2012/403870

    Article  PubMed  PubMed Central  Google Scholar 

  83. Belzer FO, Southard JH (1988) Principles of solid-organ preservation by cold storage. Transplantation 45(4):673–676. https://doi.org/10.1097/00007890-198804000-00001

    Article  CAS  PubMed  Google Scholar 

  84. Magni F, Panduri G, Paolocci N (1994) Hypothermia triggers iron-dependent lipoperoxidative damage in the isolated rat heart. Free Radical Biol Med 16(4):465–476. https://doi.org/10.1016/0891-5849(94)90124-4

    Article  CAS  Google Scholar 

  85. Camara AK, Riess ML, Kevin LG, Novalija E, Stowe DF (2004) Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart. Am J Physiology-Heart Circ Physiol 286(4):H1289–H1299. https://doi.org/10.1152/ajpheart.00811.2003

    Article  CAS  Google Scholar 

  86. Zhang X, Liu H, Zhang D (2021) MnSOD serves as the central molecule in adaptive thermogenesis (MnSOD functions as a thermoreceptor). Adv Redox Res 3:100027. https://doi.org/10.1016/j.arres.2021.100027

    Article  CAS  Google Scholar 

  87. Zhang X, Zhang D, Xiang L, Wang Q (2022) MnSOD functions as a thermoreceptor activated by low temperature. J Inorgan Biochem 1(229):111745. https://doi.org/10.1016/j.jinorgbio.2022.111745

    Article  CAS  Google Scholar 

Download references

Funding

Mithra. S. Mohan was supported by the Kerala State Council for Science, Technology and Environment in the form of research fellowship. Saja. K was supported by the University Grants Commission—Basic Scientific Research in the form of start-up grant—and the Department of Science and Technology—Science Engineering Research Board in the form of Young investigator program. Aswani. S. S and Aparna.N. S were supported by Joint CSIR-UGC fellowship under UGC scheme.

Author information

Authors and Affiliations

Authors

Contributions

Mithra. S. Mohan, P. R. Sudhakaran and Saja. K conceptualized the study and planned the experiments and discussed the results. Mithra. S. Mohan wrote the draft of the manuscript. Saja. K, P. R. Sudhakaran and P. T. Boban reviewed and edited the manuscript. Mithra. S. Mohan, Aswani. S. S. and Aparna N. S. carried out the experiments. All authors participated in the design of the study and interpretation and analysis of the data and reviewed the manuscript.

Corresponding author

Correspondence to K. Saja.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Experiments in this research were reviewed and approved by the animal ethical committee, University of Kerala (IAEC-KU-12b/2014-15).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.S., Aswani, S.S., Aparna, N.S. et al. Effect of acute cold exposure on cardiac mitochondrial function: role of sirtuins. Mol Cell Biochem 478, 2257–2270 (2023). https://doi.org/10.1007/s11010-022-04656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04656-1

Keywords

Navigation