Skip to main content

Advertisement

Log in

Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to ‘signaling danger’ proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Carney EF (2020) The impact of chronic kidney disease on global health. Nat Rev Nephrol 16(5):251–251. https://doi.org/10.1038/s41581-020-0268-7

    Article  PubMed  Google Scholar 

  2. Luyckx VA, Tonelli M, Stanifer JW (2018) The global burden of kidney disease and the sustainable development goals. Bull World Health Organ 96(6):414–422. https://doi.org/10.2471/BLT.17.206441

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaudry S, Hajage D, Benichou N et al (2020) Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials. The Lancet 395(10235):1506–1515. https://doi.org/10.1016/S0140-6736(20)30531-6

    Article  Google Scholar 

  4. Komada T, Muruve DA (2019) The role of inflammasomes in kidney disease. Nat Rev Nephrol 15(8):501–520. https://doi.org/10.1038/s41581-019-0158-z

    Article  PubMed  Google Scholar 

  5. Aly RH, Ahmed AE, Hozayen WG et al (2020) Patterns of toll-like receptor expressions and inflammatory cytokine levels and their implications in the progress of insulin resistance and diabetic nephropathy in type 2 diabetic patients. Front Physiol 11:1723

    Article  Google Scholar 

  6. Anders HJ (2010) Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol 21(8):1270–1274. https://doi.org/10.1681/asn.2010030233

    Article  CAS  PubMed  Google Scholar 

  7. Patole PS, Schubert S, Hildinger K et al (2005) Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int 68(6):2582–2587. https://doi.org/10.1111/j.1523-1755.2005.00729.x

    Article  CAS  PubMed  Google Scholar 

  8. Ma J, Chadban SJ, Zhao CY et al (2014) TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS ONE 9(5):e97985. https://doi.org/10.1371/journal.pone.0097985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma K, Li J, Wang X et al (2018) TLR4(+)CXCR4(+) plasma cells drive nephritis development in systemic lupus erythematosus. Ann Rheum Dis 77(10):1498–1506. https://doi.org/10.1136/annrheumdis-2018-213615

    Article  CAS  PubMed  Google Scholar 

  10. Fan Y, Xiao W, Lee K et al (2017) Inhibition of reticulon-1A-mediated endoplasmic reticulum stress in early AKI attenuates renal fibrosis development. J Am Soc Nephrol 28(7):2007. https://doi.org/10.1681/ASN.2016091001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gómez-Sierra T, Bellido B, Reyes-Fermín LM et al (2021) Regulation of endoplasmic reticulum stress in models of kidney disease. Adv Redox Res 3:100010. https://doi.org/10.1016/j.arres.2021.100010

    Article  CAS  Google Scholar 

  12. Shu S, Zhu J, Liu Z et al (2018) Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine 37:269–280. https://doi.org/10.1016/j.ebiom.2018.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tam AB, Mercado EL, Hoffmann A et al (2012) ER Stress Activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS ONE 7(10):e45078. https://doi.org/10.1371/journal.pone.0045078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q-L, Xing W, Yu C et al (2021) ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol Immunol 138:99–109. https://doi.org/10.1016/j.molimm.2021.07.022

    Article  CAS  PubMed  Google Scholar 

  15. Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H et al (2019) Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran J Basic Med Sci 22(4):384–390. https://doi.org/10.22038/ijbms.2019.31788.7651

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuno A, Kimura Y, Mizuno M et al (2020) Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats. Sci Rep 10(1):7238. https://doi.org/10.1038/s41598-020-64380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Mohler ER, Xie D et al (2016) Traditional and non-traditional risk factors for incident peripheral arterial disease among patients with chronic kidney disease. Nephrol Dial Transplant 31(7):1145–1151. https://doi.org/10.1093/ndt/gfv418

    Article  PubMed  Google Scholar 

  18. Chen Q, Guan X, Zuo X et al (2016) The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B 6(3):183–188. https://doi.org/10.1016/j.apsb.2016.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mima A (2022) Mitochondria-targeted drugs for diabetic kidney disease. Heliyon 8(2):e08878. https://doi.org/10.1016/j.heliyon.2022.e08878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma N, Anders HJ, Gaikwad AB (2019) Fiend and friend in the renin angiotensin system: an insight on acute kidney injury. Biomed Pharmacother 110:764–774. https://doi.org/10.1016/j.biopha.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  21. Kazancioğlu R (2013) Risk factors for chronic kidney disease: an update. Kidney Int Suppl 3(4):368–371. https://doi.org/10.1038/kisup.2013.79

    Article  Google Scholar 

  22. Premkumar V, Dey M, Dorn R et al (2010) MyD88-dependent and independent pathways of toll-like receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages. BMC Chem Biol 10:3–3. https://doi.org/10.1186/1472-6769-10-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jain S, Plenter R, Nydam T et al (2021) Deletion of TLR4 reduces apoptosis and improves histology in a murine kidney transplant model. Sci Rep 11(1):16182. https://doi.org/10.1038/s41598-021-95504-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krüger B, Krick S, Dhillon N et al (2009) Donor toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci 106(9):3390. https://doi.org/10.1073/pnas.0810169106

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jain S, Keys D, Ljubanovic D et al (2015) Protection against cold storage-induced renal tubular cell apoptosis. Transplantation 99(11):2311–2316. https://doi.org/10.1097/tp.0000000000000774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urbschat A, Baer P, Zacharowski K et al (2018) Systemic TLR2 antibody application in renal ischaemia and reperfusion injury decreases AKT phosphorylation and increases apoptosis in the mouse kidney. Basic Clin Pharmacol Toxicol 122(2):223–232. https://doi.org/10.1111/bcpt.12896

    Article  CAS  PubMed  Google Scholar 

  27. Yuan S, Liu X, Zhu X et al (2018) The role of TLR4 on PGC-1α-mediated oxidative stress in tubular cell in diabetic kidney disease. Oxid Med Cell Longev 2018:6296802. https://doi.org/10.1155/2018/6296802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bell CW, Jiang W et al (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291(6):C1318–C1325. https://doi.org/10.1152/ajpcell.00616.2005

    Article  CAS  PubMed  Google Scholar 

  29. Huang Z, Zhong Z, Zhang L et al (2015) Down-regulation of HMGB1 expression by shRNA constructs inhibits the bioactivity of urothelial carcinoma cell lines via the NF-κB pathway. Sci Rep 5(1):12807. https://doi.org/10.1038/srep12807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao X, Kuja-Panula J, Fau-Rouhiainen A, Rouhiainen A, Fau-Chen Y-C et al (2011) High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 286(26):23200–23213. https://doi.org/10.1074/jbc.M111.223834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evankovich J, Cho SW, Zhang R et al (2010) High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem 285(51):39888–39897. https://doi.org/10.1074/jbc.M110.128348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang H, Antoine DJ, Andersson U et al (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93(6):865–873. https://doi.org/10.1189/jlb.1212662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou X, Lin N, Zhang M et al (2020) Circulating soluble receptor for advanced glycation end products and other factors in type 2 diabetes patients with colorectal cancer. BMC Endocr Disord 20(1):170. https://doi.org/10.1186/s12902-020-00647-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Fau-Zhou LS et al (2021) Research on the relationship between RAGE and its ligand HMGB1, and prognosis and pathogenesis of gastric cancer with diabetes mellitus. Eur Rev Med Pharmacol Sci 25(3):1339–1350. https://doi.org/10.26355/eurrev_202102_24841

    Article  CAS  PubMed  Google Scholar 

  35. Chhipa AS, Borse SP, Baksi R et al (2019) Targeting receptors of advanced glycation end products (RAGE): preventing diabetes induced cancer and diabetic complications. Pathol Res Pract 215(11):152643. https://doi.org/10.1016/j.prp.2019.152643

    Article  CAS  PubMed  Google Scholar 

  36. Chen R-C, Yi P-P, Zhou R-R et al (2014) The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol Cell Biochem 390(1):271–280. https://doi.org/10.1007/s11010-014-1978-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fahmueller YN, Nagel D, Hoffmann R-T et al (2013) Immunogenic cell death biomarkers HMGB1, RAGE, and DNAse indicate response to radioembolization therapy and prognosis in colorectal cancer patients. Int J Cancer 132(10):2349–2358. https://doi.org/10.1002/ijc.27894

    Article  CAS  PubMed  Google Scholar 

  38. Wu H, Ma J, Wang P et al (2010) HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol 21(11):1878. https://doi.org/10.1681/ASN.2009101048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agalave NM, Svensson CI (2015) Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med (Cambridge) 20(1):569–578. https://doi.org/10.2119/molmed.2014.00176

    Article  Google Scholar 

  40. Oh SM, Park G, Lee SH et al (2017) Assessing the recovery from prerenal and renal acute kidney injury after treatment with single herbal medicine via activity of the biomarkers HMGB1, NGAL and KIM-1 in kidney proximal tubular cells treated by cisplatin with different doses and exposure times. BMC Complement Altern Med 17(1):544. https://doi.org/10.1186/s12906-017-2055-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bruchfeld A, Qureshi AR, Lindholm B et al (2008) High mobility group box protein-1 correlates with renal function in chronic kidney disease (CKD). Mol Med 14(3–4):109–115. https://doi.org/10.2119/2007-00107

    Article  CAS  PubMed  Google Scholar 

  42. Oh H, Choi A, Seo N et al (2021) Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury. Sci Rep 11(1):15625. https://doi.org/10.1038/s41598-021-94928-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun N, Wang H, Wang L (2016) Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway. Mol Med Rep 14(3):2764–2770. https://doi.org/10.3892/mmr.2016.5535

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Zhang R, Chen J et al (2017) High mobility group box1 inhibitor glycyrrhizic acid attenuates kidney injury in streptozotocin-induced diabetic rats. Kidney Blood Press Res 42(5):894–904. https://doi.org/10.1159/000485045

    Article  CAS  PubMed  Google Scholar 

  45. Seo MS, Kim HJ, Kim H et al (2019) Ethyl pyruvate directly attenuates active secretion of HMGB1 in proximal tubular cells via induction of heme oxygenase-1. J. Clin. Med. 8(5):629. https://doi.org/10.3390/jcm8050629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22(20):5551–5560. https://doi.org/10.1093/emboj/cdg516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruan Y, Wang L, Zhao Y et al (2014) Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury. Kidney Int 86(3):525–537. https://doi.org/10.1038/ki.2014.80

    Article  CAS  PubMed  Google Scholar 

  48. Sankrityayan H, Oza MJ, Kulkarni YA et al (2019) ER stress response mediates diabetic microvascular complications. Drug Discov Today 24(12):2247–2257. https://doi.org/10.1016/j.drudis.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  49. Cybulsky AV (2017) Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 13(11):681–696. https://doi.org/10.1038/nrneph.2017.129

    Article  CAS  PubMed  Google Scholar 

  50. Bartoszewska S, Collawn JF (2020) Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 25(1):18. https://doi.org/10.1186/s11658-020-00212-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao Y, Trillo-Tinoco J, Sierra RA et al (2019) ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun 10(1):1280. https://doi.org/10.1038/s41467-019-09263-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wei S, Gao Y, Dai X et al (2018) SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am J Physiol-Renal Physiol 316(1):F20–F31. https://doi.org/10.1152/ajprenal.00119.2018

    Article  CAS  PubMed  Google Scholar 

  53. González-Guerrero C, Ocaña-Salceda C, Berzal S et al (2013) Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells. Toxicol Appl Pharmacol 272(3):825–841. https://doi.org/10.1016/j.taap.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  54. Hu H, Tian M, Ding C et al (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mostafa RG, El Abd AE, Fouda EA, Taha FR, Elzorkany KM (2020) A pilot study on gene expression of endoplasmic reticulum unfolded protein response in chronic kidney disease. Biochem Biophys Rep 24:100829. https://doi.org/10.1016/j.bbrep.2020.100829

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu S-H, Wu C-T, Huang K-H et al (2016) C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget 7:16

    Google Scholar 

  57. Zhang M, Guo Y, Fu H et al (2015) Chop deficiency prevents UUO-induced renal fibrosis by attenuating fibrotic signals originated from Hmgb1/TLR4/NFκB/IL-1β signaling. Cell Death Dis 6(8):e1847. https://doi.org/10.1038/cddis.2015.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen X, Weng C, Wang Y et al (2020) Lipopolysaccharide-induced podocyte injury is regulated by calcineurin/NFAT and TLR4/MyD88/NF-κB signaling pathways through angiopoietin-like protein 4. Genes Dis. https://doi.org/10.1016/j.gendis.2020.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang CC, Yao CA, Yang JC et al (2014) Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol Sci 141(1):155–165. https://doi.org/10.1093/toxsci/kfu121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa SI (2012) Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 61(11):2967–2979. https://doi.org/10.2337/db11-1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mima A, Ohshiro Y, Kitada M, Matsumoto M et al (2011) Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int 79(8):883–96. https://doi.org/10.1038/ki.2010.526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Serrero M, Planès R, Bahraoui E (2017) PKC-δ isoform plays a crucial role in Tat-TLR4 signalling pathway to activate NF-κB and CXCL8 production. Sci Rep 7(1):2384. https://doi.org/10.1038/s41598-017-02468-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang N, Mao L, Yang L et al (2017) Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-κB pathway. Oncotarget 8(22):36449–36461. https://doi.org/10.18632/oncotarget.16860

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang XX, Levi J, Luo Y et al (2017) SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice*. J Biol Chem 292(13):5335–5348. https://doi.org/10.1074/jbc.M117.779520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mima A, Kitada M, Geraldes P, Li Q, Matsumoto M, Mizutani K, Qi W, Li C, Leitges M, Rask-Madsen C, King GL (2012) Glomerular VEGF resistance induced by PKCδ/SHP-1 activation and contribution to diabetic nephropathy. FASEB J 26(7):2963–2974. https://doi.org/10.1096/fj.11-202994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mima A, Yasuzawa T, King GL et al (2018) Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Biol 8(4):664–670. https://doi.org/10.1002/2211-5463.12400

    Article  CAS  Google Scholar 

  67. Möller-Hackbarth K, Dabaghie D, Charrin E et al (2021) Retinoic acid receptor responder1 promotes development of glomerular diseases via the nuclear factor-κB signaling pathway. Kidney Int 100(4):809–823. https://doi.org/10.1016/j.kint.2021.05.036

    Article  CAS  PubMed  Google Scholar 

  68. Shen J, Dai Z, Li Y et al (2022) TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy. Diabetol Metab Syndr 14(1):26. https://doi.org/10.1186/s13098-021-00780-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferrè S, Deng Y, Huen SC et al (2019) Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney Int 96(6):1359–1373. https://doi.org/10.1016/j.kint.2019.06.023

    Article  PubMed  PubMed Central  Google Scholar 

  70. Woo CW, Kutzler L, Kimball SR et al (2012) Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat Cell Biol 14(2):192–200. https://doi.org/10.1038/ncb2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lai H-J, Zhan Y-Q, Qiu Y-X et al (2021) HMGB1 signaling-regulated endoplasmic reticulum stress mediates intestinal ischemia/reperfusion-induced acute renal damage. Surgery 170(1):239–248. https://doi.org/10.1016/j.surg.2021.01.042

    Article  PubMed  Google Scholar 

  72. Fohlen B, Tavernier Q, Huynh T-M et al (2018) Real-time and non-invasive monitoring of the activation of the IRE1α-XBP1 pathway in individuals with hemodynamic impairment. EBioMedicine 27:284–292. https://doi.org/10.1016/j.ebiom.2017.12.023

    Article  PubMed  Google Scholar 

  73. Mami I, Bouvier N, El Karoui K et al (2016) Angiogenin mediates cell-autonomous translational control under endoplasmic reticulum stress and attenuates kidney injury. J Am Soc Nephrol 27(3):863. https://doi.org/10.1681/ASN.2015020196

    Article  CAS  PubMed  Google Scholar 

  74. Tavernier Q, Mami I, Rabant M et al (2017) Urinary angiogenin reflects the magnitude of kidney injury at the infrahistologic level. J Am Soc Nephrol 28(2):678–690. https://doi.org/10.1681/asn.2016020218

    Article  CAS  PubMed  Google Scholar 

  75. Schaafhausen MK, Yang WJ, Centanin L et al (2013) Tumor angiogenesis is caused by single melanoma cells in a manner dependent on reactive oxygen species and NF-κB. J Cell Sci 126(Pt 17):3862–3872. https://doi.org/10.1242/jcs.125021

    Article  CAS  PubMed  Google Scholar 

  76. van Bommel EJM, Muskiet MHA, Tonneijck L et al (2017) SGLT2 inhibition in the diabetic kidney—from mechanisms to clinical outcome. Clin J Am Soc Nephrol 12(4):700. https://doi.org/10.2215/CJN.06080616

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mima A (2018) Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. J Diabetes Complic 32(7):720–725. https://doi.org/10.1016/j.jdiacomp.2018.04.011

    Article  Google Scholar 

  78. Mudaliar H, Pollock C, Komala MG et al (2013) The role of toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol 305(2):F143-154. https://doi.org/10.1152/ajprenal.00398.2012

    Article  CAS  PubMed  Google Scholar 

  79. Yao D, Wang S, Wang M et al (2018) Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-κB signaling pathway. Mol Med Rep 18(4):3625–3630. https://doi.org/10.3892/mmr.2018.9393

    Article  CAS  PubMed  Google Scholar 

  80. Panchapakesan U, Pegg K, Gross S et al (2013) Effects of SGLT2 inhibition in human kidney proximal tubular cells—renoprotection in diabetic nephropathy? PLoS ONE 8(2):e54442. https://doi.org/10.1371/journal.pone.0054442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kabel AM, Salama SA (2021) Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats. Hum Exp Toxicol 40(10):1767–1780. https://doi.org/10.1177/09603271211010906

    Article  CAS  PubMed  Google Scholar 

  82. Kimura Y, Kuno A, Tanno M et al (2019) Canagliflozin, a sodium–glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J Diabetes Investig 10(4):933–946. https://doi.org/10.1111/jdi.13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ashrafi Jigheh Z, Ghorbani Haghjo A (2020) Empagliflozin attenuates renal and urinary markers of tubular epithelial cell injury in streptozotocin-induced diabetic rats. Indian J Clin Biochem 35(1):109–114. https://doi.org/10.1007/s12291-018-0790-6

    Article  CAS  PubMed  Google Scholar 

  84. Kajiwara K, Sawa Y (2021) Overexpression of SGLT2 in the kidney of a P. gingivalis LPS-induced diabetic nephropathy mouse model. BMC Nephrol 22(1):287. https://doi.org/10.1186/s12882-021-02506-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim SR, Lee SG (2020) SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 11(1):2127. https://doi.org/10.1038/s41467-020-15983-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen X, Guo X, Ge Q et al (2019) ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxid Med Cell Longev 2019:3462530. https://doi.org/10.1155/2019/3462530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shibusawa R, Yamada E, Okada S et al (2019) Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci Rep 9(1):9887. https://doi.org/10.1038/s41598-019-46402-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fernandes-Alnemri T, Kang S, Anderson C et al (2013) Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol (Baltimore) 191(8):3995–3999. https://doi.org/10.4049/jimmunol.1301681

    Article  CAS  Google Scholar 

  89. Delanaye P, Scheen AJ (2021) Epidemiology of acute kidney injury adverse events with SGLT2 inhibitors: a meta-analysis of observational cohort studies. Diabetes Epidemiol Manag 3:100021. https://doi.org/10.1016/j.deman.2021.100021

    Article  Google Scholar 

  90. Rampersad C, Kraut E, Whitlock RH et al (2020) Acute kidney injury events in patients with type 2 diabetes using SGLT2 inhibitors versus other glucose-lowering drugs: a retrospective cohort study. Am J Kidney Dis 76(4):471–479. https://doi.org/10.1053/j.ajkd.2020.03.019

    Article  CAS  PubMed  Google Scholar 

  91. Shih J-Y, Lin Y-W, Fisch S et al (2020) Dapagliflozin suppresses ER stress and improves subclinical myocardial function in diabetes: from bedside to bench. Diabetes 70(1):262–267. https://doi.org/10.2337/db20-0840

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ABG sincerely acknowledges the financial support provided by the Birla Institute of Technology and Science, Pilani, Pilani Campus, for carrying out this work. HJA was supported by the Deutsche Forschungsgemeinschaft (AN372/14-4 and 30-1).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS: Literature research, Writing—Original draft preparation, Review. AK: Writing—Review & Editing. H-JA: Participated in designing the manuscript, edited, and prepared it for submission. ABG: Conceptualization, Supervision.

Corresponding author

Correspondence to Anil Bhanudas Gaikwad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelke, V., Kale, A., Anders, HJ. et al. Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 478, 1987–1998 (2023). https://doi.org/10.1007/s11010-022-04652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04652-5

Keywords

Navigation