Skip to main content

Advertisement

Log in

Folic acid depletion along with inhibition of the PERK arm of endoplasmic reticulum stress pathway promotes a less aggressive phenotype of hepatocellular carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Folate is a vital vitamin involved in one-carbon metabolism and any changes in folate status may lead to epigenetic alterations. It is already known that stages and liver cancer progression are negatively correlated with folate levels. Nevertheless, mechanisms involved in folate deficiency in HCC (Hepatocellular carcinoma) are still not completely understood. So, this study tests the hypothesis that due to the increased demand for ER (endoplasmic reticulum) proteins, folate deficiency might lead to the induction of UPR (unfolded protein response), which is further correlated with HCC outcomes. HCC cells were cultured in both folate normal (FN) and folate deficient (FD) conditions and the expression of genes of ER stress pathway was investigated. The results demonstrated activation of UPR via induction of PERK, ATF4, and LAMP3. Besides this, FD reduced the migratory capacity and the invasiveness of HCC cells along with the reduction in mesenchymal markers like vimentin but increased apoptosis. Treatment with GSK2606414 (PERK inhibitor) decreased the FD induced expression of PERK, ATF4, and LAMP3 in FD cells. Also, GSK2606414 was found to increase apoptotic cell death and to further reduce the cancer hallmarks selectively in FD cells but not in FN cells. Altogether, our data suggest that targeting the ER stress pathway along with folate deficiency may provide a more promising elimination of the metastatic potential of HCC cells contributing to more effective therapeutic agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

PERK:

Protein kinase R (PKR)-like endoplasmic reticulum kinase

ATF4:

Activating transcription factor 4

LAMP3:

Lysosome-associated membrane glycoprotein 3

References

  1. Heindryckx F, Gerwins P (2015) Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 7(2):165–176. https://doi.org/10.4254/wjh.v7.i2.165

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tian Y, Wong VWS, Chan HLY, Cheng ASL (2013) Epigenetic regulation of hepatocellular carcinoma in non-alcoholic fatty liver disease. Semin Cancer Biol 23:471–482. https://doi.org/10.1016/j.semcancer.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  3. Zhang W, Shu XO, Li H, Yang G, Cai H, Ji B et al (2012) Vitamin intake and liver cancer risk: a report from two cohort studies in China. J Natl Cancer Inst 104:1173–1181. https://doi.org/10.1093/jnci/djs277

    Article  CAS  PubMed  Google Scholar 

  4. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38. https://doi.org/10.3945/an.111.000992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Varela-Moreiras G, Selhub J (1990) Long-term folate deficiency alters folate content and distribution differentially in rat tissues. J Nutr 122:986–991. https://doi.org/10.1093/jn/122.4.986

    Article  Google Scholar 

  6. Kuo CS, Lin CY, Wu MY, Lu CL, Huang RF (2008) Relationship between folate status and tumour progression in patients with hepatocellular carcinoma. Br J Nutr 100:596–602. https://doi.org/10.1017/S0007114508911557

    Article  CAS  PubMed  Google Scholar 

  7. van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33. https://doi.org/10.1126/science.1160809

    Article  CAS  Google Scholar 

  8. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. https://doi.org/10.1146/annurev.biochem.73.011303.074134

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez PM, Tabbara SO, Jacobs LK, Manning FCR, Tsangaris TN, Schwartz AM et al (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59:15–26. https://doi.org/10.1023/a:1006332011207

    Article  CAS  PubMed  Google Scholar 

  10. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JHL, Proia TA et al (2014) Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov 4:702–715. https://doi.org/10.1158/2159-8290.CD-13-0945

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Du W, Han J, Ge J (2017) LAMP3 promotes the invasion of Osteosarcoma cells via SPP1 signaling. Mol Med Rep 16:5947–5953. https://doi.org/10.3892/mmr.2017.7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mujcic H, Rzymski T, Rouschop KMA, Koritzinsky M, Milani M, Harris AL et al (2009) Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother Oncol 92:450–459. https://doi.org/10.1016/j.radonc.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  13. Ji C, Kaplowitz N (2004) Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol 10:1699–1708. https://doi.org/10.1055/s-2007-991513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahameed M, Wilhelm T, Darawshi O, Obiedat A, Tommy WS, Chintha C et al (2019) The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis 10:300. https://doi.org/10.1038/s41419-019-1523-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang M, Wang B, Takayama T, Shi X, Roenneburg DA, Kent KC et al (2015) Blocking bromo- and extra-terminal bromodomains mitigates intimal hyperplasia in rat carotid arteries: role of epigenetic reader in vascular disease. J Am Coll Surg 11:1650–1661. https://doi.org/10.1016/j.ebiom.2015.09.045

    Article  Google Scholar 

  16. Liu J, Ward RL (2010) Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet 71:79–121. https://doi.org/10.1016/B978-0-12-380864-6.00004-3

    Article  CAS  PubMed  Google Scholar 

  17. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, Desilva DA et al (2016) Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by vitamin B supplementation. Cell Death Dis 7:e2513. https://doi.org/10.1038/cddis.2016.374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kao TT, Chu CY, Lee GH, Hsiao TH, Cheng NW, Chang NS et al (2014) Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish: implication in neural tube defects and Alzheimer’s diseases. Neurobiol Dis 71:234–244. https://doi.org/10.1016/j.nbd.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633. https://doi.org/10.1016/s1097-2765(03)00105-9

    Article  CAS  PubMed  Google Scholar 

  20. Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC et al (2013) Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res 15:R2. https://doi.org/10.1186/bcr3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feo F, Pascale RM, Simile MM, De Miglio MR, Muroni MR, Calvisi D (2000) Genetic alterations in liver carcinogenesis: implications for new preventive and therapeutic strategies. Crit Rev Oncog 11:19–62

    Article  CAS  PubMed  Google Scholar 

  22. Limia CM, Sauzay C, Urra H, Hetz C, Chevet E, Avril T (2019) Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers (Basel) 11:631. https://doi.org/10.3390/cancers11050631

    Article  CAS  PubMed  Google Scholar 

  23. Farias N, Ho N, Butler S, Delaney L, Morrison J, Shahrzad S et al (2015) The effects of folic acid on global DNA methylation and colonosphere formation in colon cancer cell lines. J Nutr Biochem 26(8):818–826. https://doi.org/10.1016/j.jnutbio.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  24. Liang Y, Cao D, Li Y, Liu Z, Wu J (2020) MicroRNA-302a is involved in folate deficiency-induced apoptosis through the AKT-FOXO1-BIM pathway in mouse embryonic stem cells. Nutr Metab 17:103. https://doi.org/10.1186/s12986-020-00530-3

    Article  CAS  Google Scholar 

  25. Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ et al (2011) Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway. Sci Signal 4:ra2. https://doi.org/10.1126/scisignal.2001630

    Article  CAS  Google Scholar 

  26. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420–49429. https://doi.org/10.1038/sj.embor.7400779

    Article  CAS  PubMed  Google Scholar 

  28. Chunhua L, Donglan L, Xiuqiong F, Lihua Z, Qin F, Yawei L et al (2013) Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem 24:1766–1775. https://doi.org/10.1016/j.jnutbio.2013.03.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are so grateful to Mr. Ravjit Singh (Senior Lab Technician) for his help in flow cytometry analysis.

Funding

We are thankful to DST-FIST for the sponsorship of the flow cytometry facility.

Author information

Authors and Affiliations

Authors

Contributions

HG: Writing-original draft, Methodology, Data curation. RS: Supervision, Investigation, Visualization. DL: Software, Validation. JK: Conceptualization.

Corresponding author

Correspondence to Jyotdeep Kaur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 9586 KB)

Supplementary file2 (DOCX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, H., Sharma, R., Lamba, D. et al. Folic acid depletion along with inhibition of the PERK arm of endoplasmic reticulum stress pathway promotes a less aggressive phenotype of hepatocellular carcinoma cells. Mol Cell Biochem 478, 2057–2068 (2023). https://doi.org/10.1007/s11010-022-04651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04651-6

Keywords

Navigation