Skip to main content
Log in

β-II tubulin isotype directs stiffness and differentiation of neuroblastoma SH-SY5Y cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

β-tubulin isotypes regulate the structure and bundling of microtubule (MT) lattice, its dynamics, and resulting functions. They exhibit differential tissue expression, varying due to physical and biochemical cues. In this work, we investigated the effect of transient heat shock at 42 °C on the nuclear and cytoplasmic stiffness of SH-SY5Y neuroblastoma cells through atomic force microscopy. Moreover, the variations in the expression of β-tubulin isotypes as a heat shock response were also monitored. The heat-exposed cells endured a recovery at 37 °C for 24 h and they manifested an increase of cytoplasmic stiffness by 130 ± 25% with respect to untreated controls. The expression of β-II tubulin isotype in heat-recovered cells is augmented by 51 ± 5% whereas the levels of total tubulin and β-III tubulin isotype remain unaltered. Upon depletion of β-II tubulin isotype using shRNA, the increase in cytoplasmic stiffness was dampened. However, it remained unaffected upon depletion with β-III tubulin isotype shRNA. This features the role of the β-II tubulin isotype in regulating cellular stiffness. In addition, neuroblastoma SH-SY5Y cells undergo differentiation by initiating neuritogenesis and prior evidence suggests the indispensable role of β-II tubulin isotype in this process. The heat-recovered cells which expressed higher levels of β-II tubulin isotype expedited the differentiation process in 3-day which was around 5-day for control cells, however, upon depletion of β-II tubulin isotype, the cells almost lost their differentiation potential. Altogether, this work highlights the role of β-II tubulin isotype as a biomarker for cellular stiffness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data have been included in the paper as figures, and tables.

Abbreviations

MTs:

microtubules

AFM:

atomic force microscopy

MAPs:

microtubule-associated proteins

DMEM:

Dulbecco’s modified eagle medium

FBS:

fetal bovine serum

RA:

trans-retinoic acid

DM:

differentiation media

References

  1. Ludueña RF (2013) A hypothesis on the origin and evolution of tubulin. Int Rev Cell Mol Biol 302:41–185. https://doi.org/10.1016/B978-0-12-407699-0.00002-9

    Article  CAS  PubMed  Google Scholar 

  2. Prassanawar SS, Panda D (2019) Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochemical Journal 476:1359–1376. https://doi.org/10.1042/BCJ20190123

    Article  CAS  PubMed  Google Scholar 

  3. Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21(6):307–326. https://doi.org/10.1038/s41580-020-0214-3

    Article  CAS  PubMed  Google Scholar 

  4. Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302. https://doi.org/10.1146/ANNUREV.BIOCHEM.69.1.277

    Article  CAS  PubMed  Google Scholar 

  5. Parker AL, Teo WS, McCarroll JA, Kavallaris M (2017) An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance. Int J Mol Sci 18:1434. https://doi.org/10.3390/IJMS18071434

    Article  PubMed  PubMed Central  Google Scholar 

  6. Panda D, Miller HP, Banerjee A et al (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 91:11358–11362. https://doi.org/10.1073/PNAS.91.24.11358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amargant F, Barragan M, Vassena R, Vernos I (2019) Insights of the tubulin code in gametes and embryos: from basic research to potential clinical applications in humans. Biol Reprod 100:575–589. https://doi.org/10.1093/BIOLRE/IOY203

    Article  PubMed  Google Scholar 

  8. Ti S-C, Alushin GM, Kapoor TM (2018) Human b-tubulin isotypes can regulate microtubule protofilament number and stability developmental cell human b-tubulin isotypes can regulate microtubule protofilament number and stability. Dev Cell 47:175-190.e5. https://doi.org/10.1016/j.devcel.2018.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaaban S, Brouhard GJ (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 28:2924. https://doi.org/10.1091/MBC.E16-05-0271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934. https://doi.org/10.1083/JCB.120.4.923

    Article  CAS  PubMed  Google Scholar 

  11. Tolomeo JA, Holley MC (1997) Mechanics of microtubule bundles in pillar cells from the inner ear. Biophys J 73:2241–2247. https://doi.org/10.1016/S0006-3495(97)78255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cueva JG, Hsin J, Huang KC, Goodman MB (2012) Posttranslational acetylation of α-tubulin constrains protofilament number in native microtubules. Curr Biol 22:1066–1074. https://doi.org/10.1016/J.CUB.2012.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo J, Walss-Bass C, Ludueña RF (2010) The β isotypes of tubulin in neuronal differentiation. Cytoskeleton (Hoboken) 67:431. https://doi.org/10.1002/CM.20455

    Article  CAS  PubMed  Google Scholar 

  14. Guo J, Qiang M, Ludueña RF (2011) The distribution of β-tubulin isotypes in cultured neurons from embryonic, new born, and adult mouse brains. Brain Res 1420:8–18. https://doi.org/10.1016/J.BRAINRES.2011.08.066

    Article  CAS  PubMed  Google Scholar 

  15. Dwane S, Durack E, Kiely PA (2013) Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res Notes 6:366. https://doi.org/10.1186/1756-0500-6-366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jäättelä M, Jaattela M (2009) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271. https://doi.org/10.3109/07853899908995889

    Article  Google Scholar 

  17. Pegoraro AF, Janmey P, Weitz DA (2017) Mechanical properties of the cytoskeleton and cells. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/CSHPERSPECT.A022038

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485. https://doi.org/10.1038/NATURE08908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubitschke H, Schnauss J, Nnetu KD et al (2017) Actin and microtubule networks contribute differently to cell response for small and large strains. New J Phys 19:093003. https://doi.org/10.1088/1367-2630/AA7658

    Article  Google Scholar 

  20. Calzado-Martín A, Encinar M, Tamayo J et al (2016) Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano 10:3365–3374

    Article  PubMed  Google Scholar 

  21. Marchant C, Malmi-Kakkada A, Espina J, Barriga E (2021) Microtubule deacetylation reduces cell stiffness to allow the onset of collective cell migration in vivo. BioRxiv. https://doi.org/10.1101/2021.08.12.456059

    Article  Google Scholar 

  22. Sehgel NL, Vatner SF, Meininger GA (2015) “Smooth muscle cell stiffness syndrome”-revisiting the structural basis of arterial stiffness. Front Physiol. https://doi.org/10.3389/FPHYS.2015.00335

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hayashi K, Iwata M (2015) Stiffness of cancer cells measured with an AFM indentation method. J Mech Behav Biomed Mater 49:105–111. https://doi.org/10.1016/J.JMBBM.2015.04.030

    Article  PubMed  Google Scholar 

  24. Xu W, Mezencev R, Kim B et al (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7:e46609. https://doi.org/10.1371/JOURNAL.PONE.0046609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pillet F, Lemonier S, Schiavone M et al (2014) Uncovering by atomic force microscopy of an original circular structure at the yeast cell surface in response to heat shock. BMC Biol 12:1–11. https://doi.org/10.1186/1741-7007-12-6/TABLES/1

    Article  Google Scholar 

  26. Mundhara N, Majumder A, Panda D (2021) Hyperthermia induced disruption of mechanical balance leads to G1 arrest and senescence in cells. Biochem J 478:179–196. https://doi.org/10.1042/BCJ20200705

    Article  CAS  PubMed  Google Scholar 

  27. Teppola H, Sarkanen JR, Jalonen TO, Linne ML (2016) Morphological differentiation towards neuronal phenotype of SH-SY5Y neuroblastoma cells by estradiol, retinoic acid and cholesterol. Neurochem Res 41:731–747. https://doi.org/10.1007/s11064-015-1743-6

    Article  CAS  PubMed  Google Scholar 

  28. Agholme L, Lindström T, Kgedal K et al (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimer’s Dis 20:1069–1082. https://doi.org/10.3233/JAD-2010-091363

    Article  CAS  Google Scholar 

  29. Tanaka A, Fujii Y, Kasai N et al (2018) Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment. PLoS ONE 13:1–16. https://doi.org/10.1371/journal.pone.0191928

    Article  CAS  Google Scholar 

  30. de los Santos M, Zambrano A, Aranda A, (2007) Combined effects of retinoic acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-06-0623

    Article  PubMed  Google Scholar 

  31. Korecka JA, van Kesteren RE, Blaas E et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS ONE. https://doi.org/10.1371/journal.pone.0063862

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mundhara N, Yadav S, Shirke PU et al (2021) Substrate loss modulus promotes the differentiation of SHSY-5Y neuroblastoma cells. Materialia (Oxf) 15:100968. https://doi.org/10.1016/J.MTLA.2020.100968

    Article  CAS  Google Scholar 

  33. MacKay JL, Kumar S (2012) Measuring the elastic properties of living cells with atomic force microscopy indentation. Cell imaging techniques. Humana Press, Totowa, pp 313–329

    Chapter  Google Scholar 

  34. Mundhara N, Majumder A, Panda D (2019) Methyl-β-cyclodextrin, an actin depolymerizer augments the antiproliferative potential of microtubule-targeting agents. Sci Rep 9:7638. https://doi.org/10.1038/s41598-019-43947-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar A, Naaz A, Prakasham AP et al (2017) Potent anticancer activity with high selectivity of a chiral palladium N-Heterocyclic carbene complex. ACS Omega 2:4632–4646. https://doi.org/10.1021/acsomega.7b00688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rai A, Kapoor S, Naaz A et al (2017) Enhanced stability of microtubules contributes in the development of colchicine resistance in MCF-7 cells. Biochem Pharmacol 132:38–47. https://doi.org/10.1016/j.bcp.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  37. Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc Natl Acad Sci USA 102:9878–9883. https://doi.org/10.1073/pnas.0501821102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou J, Panda D, Landen JW et al (2002) Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J Biol Chem 277:17200–17208. https://doi.org/10.1074/JBC.M110369200

    Article  CAS  PubMed  Google Scholar 

  39. Rathinasamy K, Panda D (2008) Kinetic stabilization of microtubule dynamic instability by benomyl increases the nuclear transport of p53. Biochem Pharmacol 76:1669–1680. https://doi.org/10.1016/j.bcp.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava S, Panda D (2018) A centrosomal protein STARD9 promotes microtubule stability and regulates spindle microtubule dynamics. Cell Cycle 17:2052–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salazar N, Muñoz D, Hoy J, Lokeshwar BL (2014) Use of shRNA for stable suppression of chemokine receptor expression and function in human cancer cell lines. Methods Mol Biol 1172:209. https://doi.org/10.1007/978-1-4939-0928-5_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Central Instrumentation Facility of the Indian Institute of Technology Bombay for atomic force microscopy. We thank Prof. Abhijit Majumder for allowing us to use his phase-contrast microscope (EVOS-FL auto-inverted microscope, Life Technologies). We acknowledge the Indian Institute of Technology, Bombay for providing a postdoctoral fellowship to NM. We would like to acknowledge the funding provided by the JC Bose Fellowship (JCB/2019/000016) from the Department of Science and Technology Government of India to DP.

Author information

Authors and Affiliations

Authors

Contributions

NM and DP designed the experiments, analysed data, and wrote the manuscript. NM performed the experiments. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Dulal Panda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundhara, N., Panda, D. β-II tubulin isotype directs stiffness and differentiation of neuroblastoma SH-SY5Y cells. Mol Cell Biochem 478, 1961–1971 (2023). https://doi.org/10.1007/s11010-022-04649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04649-0

Keywords

Navigation