Skip to main content

Advertisement

Log in

Dkk-1–TNF-α crosstalk regulates MC3T3E1 pre-osteoblast proliferation and differentiation under mechanical stress through the ERK signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The study aims to explore the role of the ERK signaling pathway in the crosstalk between Dkk-1 and TNF-α in MC3T3E1 pre-osteoblasts under cyclic tensile/compressive stress. A forced four-point bending system was used to apply cyclic uniaxial tensile/compressive strain (2000 μ, 0.5 Hz) to MC3T3E1 cells. Dkk-1 and TNF-α expression were upregulated in MC3T3E1 cells under compressive strain. Cell proliferation, the cell cycle, osteogenesis-related gene (Wnt5a, Runx2, Osterix) expression, β-catenin expression, and the p-ERK/ERK ratio were significantly enhanced, whereas apoptosis, the RANKL/OPG ratio, and TNF-α expression were significantly attenuated, by Dkk-1 silencing. Dkk-1 expression increased and the effects of Dkk-1 silencing were reversed when exogenous TNF-α was added. Mechanically, TNF-α crosstalked with Dkk-1 through ERK signaling in MC3T3E1 cells. ERK signaling blockade impaired Dkk-1-induced TNF-α expression and TNF-α-mediated Dkk-1 expression. Dkk-1 and TNF-α crosstalked, partially through ERK signaling, in MC3T3E1 cells under compressive/tensile strain, synergistically modulating various biological behaviors of the cells. These findings not only provide mechanical insight into the cellular events and molecular regulation of orthodontic tooth movement (OTM), but also aid the development of novel strategies to accelerate OTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

OTM:

Orthodontic tooth movement

Dkk-1:

Dickkopf-related protein 1

RANKL:

Nuclear factor-κB ligand

OPG:

Osteoprotegerin

TNF:

Tumor necrosis factor

ERK:

Extracellular-regulated protein kinase

MSCs:

Mesenchymal stem cells

ATCC:

American Typical Culture Collection

α-MEM:

α -Modified Eagle’s medium (

FBS:

Fetal bovine serum

siRNAs:

Small interfering RNAs

RT-PCR:

Reverse-transcription polymerase chain reaction

FITC:

Fluorescein isothiocyanate

DAPI:

4′,6-Diamidino-2-phenylindole

References

  1. Li Y, Jacox LA, Little SH, Ko CC (2018) Orthodontic tooth movement: the biology and clinical implications. Kaohsiung J Med Sci 34:207–214. https://doi.org/10.1016/j.kjms.2018.01.007

    Article  PubMed  Google Scholar 

  2. Huang H, Williams RC, Kyrkanides S (2014) Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofac Orthop 146:620–632. https://doi.org/10.1016/j.ajodo.2014.07.007

    Article  Google Scholar 

  3. Yamaguchi M, Fukasawa S (2021) Is inflammation a friend or foe for orthodontic treatment?: inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement. Int J Mol Sci. https://doi.org/10.3390/ijms22052388

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gkantidis N, Christou P, Topouzelis N (2010) The orthodontic-periodontic interrelationship in integrated treatment challenges: a systematic review. J Oral Rehabilit 37:377–390. https://doi.org/10.1111/j.1365-2842.2010.02068.x

    Article  CAS  Google Scholar 

  5. Gyawali R, Bhattarai B (2017) Orthodontic management in aggressive periodontitis. Int Sch Res Notices 2017:8098154. https://doi.org/10.1155/2017/8098154

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jeon HH, Teixeira H, Tsai A (2021) Mechanistic insight into orthodontic tooth movement based on animal studies: a critical review. J Clin Med. https://doi.org/10.3390/jcm10081733

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Zhan Q, Bao M, Yi J, Li Y (2021) Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci 13:20. https://doi.org/10.1038/s41368-021-00125-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi Y, Uehara S, Udagawa N, Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159:387–392. https://doi.org/10.1093/jb/mvv124

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Liu L, Liu A (2018) Dickkopf-1: current knowledge and related diseases. Life Sci 209:249–254. https://doi.org/10.1016/j.lfs.2018.08.019

    Article  CAS  PubMed  Google Scholar 

  10. Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33:747–783. https://doi.org/10.1210/er.2011-1060

    Article  CAS  PubMed  Google Scholar 

  11. Lu J, Duan Y, Zhang M, Wu M, Wang Y (2016) Expression of Wnt3a, Wnt10b, β-catenin and DKK1 in periodontium during orthodontic tooth movement in rats. Acta Odontol Scand 74:217–223. https://doi.org/10.3109/00016357.2015.1090011

    Article  CAS  PubMed  Google Scholar 

  12. Han XL, Liu M, Voisey A, Ren YS, Kurimoto P, Gao T et al (2011) Post-natal effect of overexpressed DKK1 on mandibular molar formation. J Dent Res 90:1312–1317. https://doi.org/10.1177/0022034511421926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chae WJ, Bothwell ALM (2019) Dickkopf1: an immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 108:33–39. https://doi.org/10.1016/j.diff.2019.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sieper J (2011) Spondyloarthropathies in 2010: new insights into therapy-TNF blockade and beyond. Nat Rev Rheumatol 7:78–80. https://doi.org/10.1038/nrrheum.2010.224

    Article  CAS  PubMed  Google Scholar 

  15. Ma Y, Zhang X, Wang M, Xia Q, Yang J, Wu M et al (2018) The serum level of Dickkopf-1 in patients with rheumatoid arthritis: a systematic review and meta-analysis. Int Immunopharmacol 59:227–232. https://doi.org/10.1016/j.intimp.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  16. Wu M, Chen M, Ma Y, Yang J, Han R, Yuan Y et al (2018) Dickkopf-1 in ankylosing spondylitis: review and meta-analysis. Clin Chim Acta 481:177–183. https://doi.org/10.1016/j.cca.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  17. Miranda TS, Napimoga MH, Feres M, Marins LM, da Cruz DF, da Silva HDP et al (2018) Antagonists of Wnt/β-catenin signalling in the periodontitis associated with type 2 diabetes and smoking. J Clin Periodontol 45:293–302. https://doi.org/10.1111/jcpe.12854

    Article  CAS  PubMed  Google Scholar 

  18. Katz S, Boland R, Santillán G (2006) Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int J Biochem Cell Biol 38:2082–2091. https://doi.org/10.1016/j.biocel.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Zhang X, Zhang P, Fang B, Jiang L (2012) Intermittent traction stretch promotes the osteoblastic differentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect Tissue Res 53:451–459. https://doi.org/10.3109/03008207.2012.702815

    Article  CAS  PubMed  Google Scholar 

  20. Wang B, Du T, Wang Y, Yang C, Zhang S, Cao X (2011) Focal adhesion kinase signaling pathway is involved in mechanotransduction in MG-63 cells. Biochem Biophys Res Commun 410:671–676. https://doi.org/10.1016/j.bbrc.2011.06.054

    Article  CAS  PubMed  Google Scholar 

  21. Yan YX, Gong YW, Guo Y, Lv Q, Guo C, Zhuang Y et al (2012) Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS ONE 7:e35709. https://doi.org/10.1371/journal.pone.0035709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pelaez D, Arita N, Cheung HS (2012) Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression. Biochem Biophys Res Commun 417:1286–1291. https://doi.org/10.1016/j.bbrc.2011.12.131

    Article  CAS  PubMed  Google Scholar 

  23. Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D et al (2012) Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS ONE 7:e36964. https://doi.org/10.1371/journal.pone.0036964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sabio G, Davis RJ (2014) TNF and MAP kinase signalling pathways. Semin Immunol 26:237–245. https://doi.org/10.1016/j.smim.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trotta R, Kanakaraj P, Perussia B (1996) Fc gamma R-dependent mitogen-activated protein kinase activation in leukocytes: a common signal transduction event necessary for expression of TNF-alpha and early activation genes. J Exp Med 184:1027–1035. https://doi.org/10.1084/jem.184.3.1027

    Article  CAS  PubMed  Google Scholar 

  26. Tsai EY, Falvo JV, Tsytsykova AV, Barczak AK, Reimold AM, Glimcher LH et al (2000) A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol Cell Biol 20:6084–6094. https://doi.org/10.1128/mcb.20.16.6084-6094.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng L, Hu F, Bian W, Li Y, Zhang L, Shi L et al (2021) Dickkopf-1 perpetuated synovial fibroblast activation and synovial angiogenesis in rheumatoid arthritis. Clin Rheumatol 40:4279–4288. https://doi.org/10.1007/s10067-021-05766-9

    Article  PubMed  Google Scholar 

  28. Baloul SS (2016) Osteoclastogenesis and osteogenesis during tooth movement. Front Oral Biol 18:75–79. https://doi.org/10.1159/000351901

    Article  PubMed  Google Scholar 

  29. Wang Y, Wang J, Bai D, Song J, Ye R, Zhao Z et al (2013) Cell proliferation is promoted by compressive stress during early stage of chondrogenic differentiation of rat BMSCs. J Cell Physiol 228:1935–1942. https://doi.org/10.1002/jcp.24359

    Article  CAS  PubMed  Google Scholar 

  30. Lv PY, Gao PF, Tian GJ, Yang YY, Mo FF, Wang ZH et al (2020) Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway. Stem Cell Res Ther 11:295. https://doi.org/10.1186/s13287-020-01815-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo F, Carter DE, Leask A (2011) Mechanical tension increases CCN2/CTGF expression and proliferation in gingival fibroblasts via a TGFβ-dependent mechanism. PLoS ONE 6:e19756. https://doi.org/10.1371/journal.pone.0019756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wahlsten A, Rütsche D, Nanni M, Giampietro C, Biedermann T, Reichmann E et al (2021) Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials 273:120779. https://doi.org/10.1016/j.biomaterials.2021.120779

    Article  CAS  PubMed  Google Scholar 

  33. Kang KS, Lee SJ, Lee HS, Moon W, Cho DW (2011) Effects of combined mechanical stimulation on the proliferation and differentiation of pre-osteoblasts. Exp Mol Med 43:367–373. https://doi.org/10.3858/emm.2011.43.6.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bleuel J, Zaucke F, Brüggemann GP, Niehoff A (2015) Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS ONE 10:e0119816. https://doi.org/10.1371/journal.pone.0119816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Castillo AB, Jacobs CR (2010) Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 8:98–104. https://doi.org/10.1007/s11914-010-0015-2

    Article  PubMed  Google Scholar 

  36. Luo W, Xiong W, Zhou J, Fang Z, Chen W, Fan Y et al (2011) Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43:210–216. https://doi.org/10.1093/abbs/gmr004

    Article  CAS  PubMed  Google Scholar 

  37. Li P, Ma YC, Sheng XY, Dong HT, Han H, Wang J et al (2012) Cyclic fluid shear stress promotes osteoblastic cells proliferation through ERK5 signaling pathway. Mol Cell Biochem 364:321–327. https://doi.org/10.1007/s11010-012-1233-y

    Article  CAS  PubMed  Google Scholar 

  38. Keller KC, Ding H, Tieu R, Sparks NR, Ehnes DD, Zur Nieden NI (2016) Wnt5a supports osteogenic lineage decisions in embryonic stem cells. Stem Cells Dev 25:1020–1032. https://doi.org/10.1089/scd.2015.0367

    Article  CAS  PubMed  Google Scholar 

  39. Agholme F, Isaksson H, Kuhstoss S, Aspenberg P (2011) The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 48:988–996. https://doi.org/10.1016/j.bone.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  40. Ito R, Matsumiya T, Kon T, Narita N, Kubota K, Sakaki H et al (2014) Periosteum-derived cells respond to mechanical stretch and activate Wnt and BMP signaling pathways. Biomed Res 35:69–79. https://doi.org/10.2220/biomedres.35.69

    Article  CAS  PubMed  Google Scholar 

  41. Wang JH, Zhang Y, Li HY, Liu YY, Sun T (2016) Dickkopf-1 negatively regulates the expression of osteoprotegerin, a key osteoclastogenesis inhibitor, by sequestering Lrp6 in primary and metastatic lytic bone lesions. Medicine (Baltimore) 95:e3767. https://doi.org/10.1097/md.0000000000003767

    Article  CAS  PubMed  Google Scholar 

  42. Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG (2017) Complexity of the Wnt/β-catenin pathway: searching for an activation model. Cell Signal 40:30–43. https://doi.org/10.1016/j.cellsig.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  43. Lee HL, Yi T, Baek K, Kwon A, Hwang HR, Qadir AS et al (2013) Tumor necrosis factor-α enhances the transcription of Smad ubiquitination regulatory factor 1 in an activating protein-1- and Runx2-dependent manner. J Cell Physiol 228:1076–1086. https://doi.org/10.1002/jcp.24256

    Article  CAS  PubMed  Google Scholar 

  44. Waiwut P, Shin MS, Yokoyama S, Saiki I, Sakurai H (2012) Gomisin A enhances tumor necrosis factor-α-induced G1 cell cycle arrest via signal transducer and activator of transcription 1-mediated phosphorylation of retinoblastoma protein. Biol Pharm Bull 35:1997–2003. https://doi.org/10.1248/bpb.b12-00450

    Article  CAS  PubMed  Google Scholar 

  45. Kook SH, Jang YS, Lee JC (2011) Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells. J Cell Biochem 112:2891–2901. https://doi.org/10.1002/jcb.23205

    Article  CAS  PubMed  Google Scholar 

  46. Mitsuhashi M, Yamaguchi M, Kojima T, Nakajima R, Kasai K (2011) Effects of HSP70 on the compression force-induced TNF-α and RANKL expression in human periodontal ligament cells. Inflamm Res 60:187–194. https://doi.org/10.1007/s00011-010-0253-x

    Article  CAS  PubMed  Google Scholar 

  47. Kim SJ, Park KH, Park YG, Lee SW, Kang YG (2013) Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-α expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Arch Oral Biol 58:707–716. https://doi.org/10.1016/j.archoralbio.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  48. Jaschke N, Hofbauer LC, Göbel A, Rachner TD (2020) Evolving functions of Dickkopf-1 in cancer and immunity. Cancer Lett 482:1–7. https://doi.org/10.1016/j.canlet.2020.03.031

    Article  CAS  PubMed  Google Scholar 

  49. Guo Y, Mishra A, Howland E, Zhao C, Shukla D, Weng T et al (2015) Platelet-derived Wnt antagonist Dickkopf-1 is implicated in ICAM-1/VCAM-1-mediated neutrophilic acute lung inflammation. Blood 126:2220–2229. https://doi.org/10.1182/blood-2015-02-622233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chae WJ, Ehrlich AK, Chan PY, Teixeira AM, Henegariu O, Hao L et al (2016) The Wnt antagonist Dickkopf-1 promotes pathological type 2 cell-mediated inflammation. Immunity 44:246–258. https://doi.org/10.1016/j.immuni.2016.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee JS, Ha L, Park JH, Lim JY (2012) Mechanical stretch suppresses BMP4 induction of stem cell adipogenesis via upregulating ERK but not through downregulating Smad or p38. Biochem Biophys Res Commun 418:278–283. https://doi.org/10.1016/j.bbrc.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  52. Zhang T, Wen F, Wu Y, Goh GS, Ge Z, Tan LP et al (2015) Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials 38:72–85. https://doi.org/10.1016/j.biomaterials.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  53. Choi DH, Hwang HS (2019) Anti-inflammation activity of brazilin in TNF-α induced human psoriasis dermatitis skin model. Applied Biol Chem 62:1–9

    Article  Google Scholar 

  54. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Science Foundation of China (Nos. 81973684, 81500818, 81873334, and 82174358).

Funding

This work was supported by grants from the National Nature Science Foundation of China (Nos. 81973684, 82174358 and 81873334).

Author information

Authors and Affiliations

Authors

Contributions

YW: conceptualization, investigation, methodology, and writing of original draft. ZJ: investigation, methodology, and writing of original draft. DD: investigation, methodology, and writing of original draft. JY: investigation, methodology, and writing of original draft. ML: conceptualization, project administration, and writing – review & editing. LL: conceptualization, project administration, and writing – review & editing. YZ: methodology and visualization. WW: visualization, funding acquisition, project administration, and supervision. QH: funding acquisition, project administration, and supervision. YX: funding acquisition, project administration, and supervision.

Corresponding authors

Correspondence to Qiongying Hu or Yunfei Xie.

Ethics declarations

Conflict of interest

No author has a financial relationship with a commercial firm that may pose a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 194 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Jing, Z., Deng, D. et al. Dkk-1–TNF-α crosstalk regulates MC3T3E1 pre-osteoblast proliferation and differentiation under mechanical stress through the ERK signaling pathway. Mol Cell Biochem 478, 2191–2206 (2023). https://doi.org/10.1007/s11010-022-04645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04645-4

Keywords

Navigation