Skip to main content
Log in

Impairment of RPN4, a transcription factor, induces ER stress and lipid abnormality in Saccharomyces cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. The transcription factor RPN4 {“Regulatory Particle Non-ATPase”} regulates protein homeostasis by degrading proteins that elude proper folding or assembly via the proteasomal degradation pathway. Here, we studied the lipid alterations exerted by Saccharomyces cerevisiae to mitigate (ER) stress during adaptive responses in rpn4∆ cells. The loss of RPN4-induced ER stress increased phospholipid synthesis, leading to altered membrane structures and accumulation of neutral lipids, causing an increase in lipid droplets (LDs). There was a significant upregulation of genes involved in neutral lipid and membrane lipid synthesis in rpn4∆ cells. Overexpression of RPN4 restored the defects caused by rpn4∆ cells. Thus, our study provides new insight that RPN4 impacts lipid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Chadwick SR, Lajoie P (2019) Endoplasmic reticulum stress coping mechanisms and life span regulation in health and diseases. Front Cell Dev Biol 7:84. https://doi.org/10.3389/fcell.2019.00084

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vembar SS, Brodsky JL (2008) One-step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957. https://doi.org/10.1038/nrm2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98:3056–3061. https://doi.org/10.1073/pnas.071022298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450:27–34. https://doi.org/10.1016/s0014-5793(99)00467-6

    Article  CAS  PubMed  Google Scholar 

  5. Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD (2006) Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 61:704–722. https://doi.org/10.1111/j.1365-2958.2006.05235.x

    Article  CAS  PubMed  Google Scholar 

  6. Karpov DS, Grineva EN, Kiseleva SV, Chelarskaya ES, Spasskaya DS, Karpov VL (2019) Candida glabrata Rpn4-like protein complements the RPN4 deletion in Saccharomyces cerevisiae. Mol Biol (Mosk) 53:274–281. https://doi.org/10.1134/S002689841902006X

    Article  CAS  PubMed  Google Scholar 

  7. Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50:311–316. https://doi.org/10.1194/jlr.R800049-JLR200

    Article  CAS  Google Scholar 

  8. Muthukumar K, Rajakumar S, Sarkar MN, Nachiappan V (2011) Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek 99:761–771. https://doi.org/10.1007/s10482-011-9550-9

    Article  CAS  PubMed  Google Scholar 

  9. Rajakumar S, Bhanupriya N, Ravi C, Nachiappan V (2016) Endoplasmic reticulum stress and calcium imbalance are involved in cadmium-induced lipid aberrancy in Saccharomyces cerevisiae. Cell Stress Chaperones 21:895–906. https://doi.org/10.1007/s12192-016-0714-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. James AW, Gowsalya R, Nachiappan V (1861) Dolichyl pyrophosphate phosphatase-mediated N-glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta 2016:1705–1718. https://doi.org/10.1016/j.bbalip.2016.08.004

    Article  CAS  Google Scholar 

  11. James AW, Ravi C, Srinivasan M, Nachiappan V (2019) Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci Rep 9:14485. https://doi.org/10.1038/s41598-019-51054-7

    Article  CAS  Google Scholar 

  12. Fei W, Wang H, Fu X, Bielby C, Yang H (2009) Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem J 23:61–67. https://doi.org/10.1042/BJ2009085

    Article  Google Scholar 

  13. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER associated degradation. Cell 101:249–258. https://doi.org/10.1016/s0092-8674(00)80835-1

    Article  CAS  PubMed  Google Scholar 

  14. Thibault G, Ismail N, Ng DT (2011) The unfolded protein response supports cellular robustness as a broad-spectrum compensatory pathway. Proc Natl Acad Sci USA 108:20597–20602. https://doi.org/10.1073/pnas.1117184109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thibault G, Shui G, Kim W, McAlister GC, Ismail N, Gygi SP, Wenk MR, Ng DT (2012) The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol Cell 48:16–27. https://doi.org/10.1016/j.molcel.2012.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Volmer R, Ron D (2015) Lipid-dependent regulation of the unfolded protein response. Curr Opin Cell Biol 33:67–73. https://doi.org/10.1016/j.ceb.2014.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho N, Xu C, Thibault G (2018) From the unfolded protein response to metabolic diseases—lipids under the spotlight. J Cell Sci. https://doi.org/10.1242/jcs.199307

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmidt RM, Schessner JP, Borner GH, Schuck S (2019) The proteasome biogenesis regulator Rpn4 cooperates with the unfolded protein response to promote ER stress resistance. Elife 8:e43244. https://doi.org/10.7554/eLife.43244

    Article  PubMed  PubMed Central  Google Scholar 

  19. Selvaraju K, Rajakumar S, Nachiappan V (1842) Identification of a phospholipase B encoded by the LPL1 gene in Saccharomyces cerevisiae. Biochim Biophys Acta 2014:1383–1392. https://doi.org/10.1016/j.bbalip.2014.06.013

    Article  CAS  Google Scholar 

  20. Weisshaar N, Welsch H, Guerra-Moreno A, Hanna J (2017) Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell 28:716–725. https://doi.org/10.1091/mbc.E16-10-0717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. https://doi.org/10.1038/nprot.2007.13

    Article  CAS  PubMed  Google Scholar 

  22. Shirozu R, Yashiroda H, Murata S (2015) Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett 589:933–940. https://doi.org/10.1016/j.febslet.2015.02.025

    Article  CAS  PubMed  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  24. Yadav PK, Rajasekharan R (2016) Misregulation of a DDHD domain containing lipase causes mitochondrial dysfunction in yeast. J Biol Chem 291:18562–18581. https://doi.org/10.1074/jbc.M116.733378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siakotos AN, Rouser G, Fleischer S (1969) Phospholipid composition of human, bovine and frog myelin isolated on a large from brain and spinal cord. Lipids 4:239–242. https://doi.org/10.1007/bf02532639

    Article  CAS  PubMed  Google Scholar 

  26. Block-Alper L, Webster P, Zhou X, Supekova L, Wong WH, Schultz PG, Meyer DI (2002) IN02, a positive regulator of lipid biosynthesis, is essential for the formation of inducible membranes in yeast. Mol Biol Cell 13:40–51. https://doi.org/10.1091/mbc.01-07-0366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  28. Gardarin A, Chedin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76:1034–1048. https://doi.org/10.1111/j.1365-2958.2010.07166.x

    Article  CAS  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  30. Hou J, Tang H, Liu Z, Osterlund T, Nielsen J, Petranovic D (2014) Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res 14:481–494. https://doi.org/10.1111/1567-1364.12125

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Xu H, Ju D, Xie Y (2008) Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 180:1945–1953. https://doi.org/10.1534/genetics.108.094524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Penno A, Hackenbroich G, Thiele C (1831) Phospholipids and lipid droplets. Biochim Biophys Acta 2013:589–594. https://doi.org/10.1016/j.bbalip.2012.12.001

    Article  CAS  Google Scholar 

  33. Greenberg ML, Klig LS, Letts VA, Loewy BS, Henry SA (1983) Yeast mutant defective in phosphatidylcholine synthesis. J Bacteriol 153:791–799. https://doi.org/10.1128/jb.153.2.791-799.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trotter PJ, Voelker DR (1995) Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J Biol Chem 270:6062–6070. https://doi.org/10.1074/jbc.270.11.6062

    Article  CAS  PubMed  Google Scholar 

  35. Murata Y, Watanabe T, Sato M, Momose Y, Nakahara T, Oka S, Iwahashi H (2003) Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells. J Biol Chem 278:33185–33193. https://doi.org/10.1074/jbc.M300450200

    Article  CAS  PubMed  Google Scholar 

  36. Ruegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cyto-plasmic splicing upon induction of the unfolded protein response. Cell 107:103–114. https://doi.org/10.1016/s0092-8674(01)00505-0

    Article  CAS  PubMed  Google Scholar 

  37. Fei W, Zhong L, Ta MT, Shui G, Wenk MR, Yang H (2011) The size and phospholipid composition of lipid droplets can influence their proteome. Biochem Biophys Res Commun 415:455–462. https://doi.org/10.1016/j.bbrc.2011.10.091

    Article  CAS  PubMed  Google Scholar 

  38. Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275:15609–15612. https://doi.org/10.1074/jbc.C000144200

    Article  CAS  PubMed  Google Scholar 

  39. Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299. https://doi.org/10.1007/s00253-002-1212-4

    Article  CAS  PubMed  Google Scholar 

  40. Smith SW, Weiss SB, Kennedy EP (1957) The enzymatic dephosphorylation of phosphatidic acids. J Biol Chem 228:915–922

    Article  CAS  PubMed  Google Scholar 

  41. Pascual F, Carman GM (1831) Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta 2013:514–522. https://doi.org/10.1016/j.bbalip.2012.08.006

    Article  CAS  Google Scholar 

  42. Pascual F, Hsieh LS, Soto-Cardalda A, Carman GM (2014) Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation. J Biol Chem 289:9811–9822. https://doi.org/10.1074/jbc.M114.550103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han GS, O’Hara L, Carman GM, Siniossoglou S (2008) An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J Biol Chem 283:20433–20442. https://doi.org/10.1074/jbc.M802903200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimata Y, Kohno K (2011) Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr Opin Cell Biol 23:135–142. https://doi.org/10.1016/j.ceb.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  45. Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472. https://doi.org/10.1006/scdb.1999.0318

    Article  CAS  PubMed  Google Scholar 

  46. Lajoie P, Moir RD, Willis IM, Snapp EL (2012) Kar2p availability defines distinct forms of endoplasmic reticulum stress in living cells. Mol Biol Cell 23:955–964. https://doi.org/10.1091/mbc.E11-12-0995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–1697. https://doi.org/10.1126/science.1167983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349

    Article  CAS  PubMed  Google Scholar 

  49. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187:525–536. https://doi.org/10.1083/jcb.200907074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author NB was supported by a fellowship (IF150823) from DST-INSPIRE, New Delhi, India. We also thank the UGC-BSR grant for providing financial assistance. We thank DST-FIST for providing infrastructure in the Department of Biochemistry and DST-PURSE for providing the confocal facility at Bharathidasan University. We sincerely thank Prof. J.W. Hanna (Department of Pathology, Brigham and Women’s Hospital and Harvard Medical school, Boston) USA, for gifting us the mutant strain. We thank Prof. Shigeo Murata (Laboratory of Protein Metabolism, The University of Tokyo, Japan) and Prof. Anne Skaja Robinson (Department of Chemical and Biomolecular Engineering, Tulane University, USA) for gifting the overexpression plasmid pYES2-RPN4 and UPRE-GFP. We thank Prof. Jeffrey L. Brodsky (Department of Cell Biology, University of Pittsburgh, USA) for providing Kar2 antibodies. We thank Prof. Ram Rajasekharan, Head Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India, for providing reagents for this study.

Funding

This work is supported by the UGC-BSR faculty fellowship grant [F4-5(11)/2019(BSR)],New Delhi,India and INSPIRE fellowship [IF150823],DST,New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: BN, AWJ, and VN. Experiments performed: BN. Analyzing data: BN and VN. Drafted the manuscript: BN, AM, and VN; all the authors reviewed the manuscript.

Corresponding author

Correspondence to Vasanthi Nachiappan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, B., James, A.W., Mathivanan, A. et al. Impairment of RPN4, a transcription factor, induces ER stress and lipid abnormality in Saccharomyces cerevisiae. Mol Cell Biochem 478, 2127–2139 (2023). https://doi.org/10.1007/s11010-022-04623-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04623-w

Keywords

Navigation